scholarly journals Improving Covariance Matrices Derived from Tiny Training Datasets for the Classification of Event-Related Potentials with Linear Discriminant Analysis

2020 ◽  
Author(s):  
Jan Sosulski ◽  
Jan-Philipp Kemmer ◽  
Michael Tangermann

AbstractElectroencephalogram data used in the domain of brain–computer interfaces typically has subpar signal-to-noise ratio and data acquisition is expensive. An effective and commonly used classifier to discriminate event-related potentials is the linear discriminant analysis which, however, requires an estimate of the feature distribution. While this information is provided by the feature covariance matrix its large number of free parameters calls for regularization approaches like Ledoit–Wolf shrinkage. Assuming that the noise of event-related potential recordings is not time-locked, we propose to decouple the time component from the covariance matrix of event-related potential data in order to further improve the estimates of the covariance matrix for linear discriminant analysis. We compare three regularized variants thereof and a feature representation based on Riemannian geometry against our proposed novel linear discriminant analysis with time-decoupled covariance estimates. Extensive evaluations on 14 electroencephalogram datasets reveal, that the novel approach increases the classification performance by up to four percentage points for small training datasets, and gracefully converges to the performance of standard shrinkage-regularized LDA for large training datasets. Given these results, practitioners in this field should consider using our proposed time-decoupled covariance estimation when they apply linear discriminant analysis to classify event-related potentials, especially when few training data points are available.

2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Purbandini Purbandini

Development of an optimal face recognition system will greatly depend on the characteristics of the selection process are as a basis to pattern recognition. In the characteristic selection process, there are 2 aspects that will be of mutual influence such the reduction of the amount of data used in the classification aspects and increasing discrimination ability aspects. Linear Discriminat Analysis method helps presenting the global structure while Laplacianfaces method is one method that is based on appearance (appearance-based method) in face recognition, in which the local manifold structure presented in the adjacency graph mapped from the training data points. Linear Discriminant Analysis QR decomposition has a computationally low cost because it has small dimensions so that the efficiency and scalability are very high when compared with algorithms of other Linear Discriminant Analysis methods. Laplacianfaces QR decomposition was a algorithm to obtain highly speed and accuracy, and tiny space to keep data on the face recognition. This algorithm consists of 2 stages. The first stage maximizes the distance of between-class scatter matrices by using QR decomposition and the second stage to minimize the distance of within-class scatter matrices. Therefore, it is obtained an optimal discriminant in the data. In this research, classification using the Euclidean distance method. In these experiments using face databases of the Olivetti-Att-ORL, Bern and Yale. The minimum error was achieved with the Laplacianfaces QR decomposition and Linear Discriminant Analysis QR decomposition are 5.88% and 9.08% respectively. 


2005 ◽  
Vol 38 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Thomas R. Ioerger

The ability to recognize disulfide bridges automatically in electron density maps would be useful to both protein crystallographers and automated model-building programs. A computational method is described for recognizing disulfide bridges in uninterpreted maps based on linear discriminant analysis. For each localized spherical region in a map, a vector of rotation-invariant numeric features is calculated that captures various aspects of the local pattern of density. These features values are then input into a linear equation, with coefficients computed to optimize discrimination of a set of training examples (disulfides and non-disulfides), and compared with a decision threshold. The method is shown to be highly accurate at distinguishing disulfides from non-disulfides in both the original training data and in real (experimental) electron density maps of other proteins.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Zhicheng Lu ◽  
Zhizheng Liang

Linear discriminant analysis has been widely studied in data mining and pattern recognition. However, when performing the eigen-decomposition on the matrix pair (within-class scatter matrix and between-class scatter matrix) in some cases, one can find that there exist some degenerated eigenvalues, thereby resulting in indistinguishability of information from the eigen-subspace corresponding to some degenerated eigenvalue. In order to address this problem, we revisit linear discriminant analysis in this paper and propose a stable and effective algorithm for linear discriminant analysis in terms of an optimization criterion. By discussing the properties of the optimization criterion, we find that the eigenvectors in some eigen-subspaces may be indistinguishable if the degenerated eigenvalue occurs. Inspired from the idea of the maximum margin criterion (MMC), we embed MMC into the eigen-subspace corresponding to the degenerated eigenvalue to exploit discriminability of the eigenvectors in the eigen-subspace. Since the proposed algorithm can deal with the degenerated case of eigenvalues, it not only handles the small-sample-size problem but also enables us to select projection vectors from the null space of the between-class scatter matrix. Extensive experiments on several face images and microarray data sets are conducted to evaluate the proposed algorithm in terms of the classification performance, and experimental results show that our method has smaller standard deviations than other methods in most cases.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2924
Author(s):  
Yonggi Hong ◽  
Yunji Yang ◽  
Jaehyun Park

In this paper, we propose a cooperative linear discriminant analysis (LDA)-based motion classification algorithm for distributed micro-Doppler (MD) radars which are connected to a data fusion center through the limited backhaul. Due to the limited backhaul, each radar cannot report the high-dimensional data of a multi-aspect angle MD signature to the fusion center. Instead, at each radar, the dimensionality of the MD signature is reduced by using the LDA algorithm and the dimensionally-reduced MD signature can be collected at the data fusion center. To further reduce the burden of backhaul, we also propose the softmax processing method in which the distances of the sensed MD signatures from the centers of clusters for all motion candidates are computed at each radar. The output of the softmax process at each radar is quantized through the pyramid vector quantization with a finite number of bits and is reported to the data fusion center. To improve the classification performance at the fusion center, the channel resources of the backhaul are adaptively allocated based on the classification separability at each radar. The proposed classification performance was assessed with synthetic simulation data as well as experimental data measured through the USRP-based MD radar.


2020 ◽  
Vol 2 (2) ◽  
pp. 173-183
Author(s):  
Nurhalimah Nurhalimah ◽  
I Gede Pasek Suta Wijaya ◽  
Fitri Bimantoro

Songket is one of Indonesia's cultural heritage that is still present today. One of the most famous songket woven fabrics is the Lombok songket. Lombok songket has diverse, unique, and beautiful motifs. However public knowledge of Lombok songket motifs is still minimal and the difference between one motif with another is still unknown. The lack of digitalized data collection is one reason for this. Therefore, we need a system that can classify the Lombok songket automatically. In this study, a system was developed based on texture features and shape features using Linear Discriminant Analysis (LDA). The GLCM method is used in the texture feature extraction process and the Invariant Moment method is used in the feature extraction process. The total data used in this study is 1000 images from 10 Lombok songket motifs which are divided into training data and test data. The highest accuracy is obtained on the Invariant Moment and GLCM feature with an image resolution of 300x300 pixels using the most effective feature that is equal to 96.67%.


Sign in / Sign up

Export Citation Format

Share Document