Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain

2009 ◽  
Vol 118 (5) ◽  
pp. 539-549 ◽  
Author(s):  
Atul Kumar ◽  
Dilip Kumar Jaiswal ◽  
Naveen Kumar
Author(s):  
M. Hosseininia ◽  
M. H. Heydari ◽  
Z. Avazzadeh ◽  
F. M. Maalek Ghaini

AbstractThis article studies a numerical scheme for solving two-dimensional variable-order time fractional nonlinear advection-diffusion equation with variable coefficients, where the variable-order fractional derivative is in the Caputo type. The main idea is expanding the solution in terms of the 2D Legendre wavelets (2D LWs) where the variable-order time fractional derivative is discretized. We describe the method using the matrix operators and then implement it for solving various types of fractional advection-diffusion equations. The experimental results show the computational efficiency of the new approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
A. R. Appadu ◽  
H. H. Gidey

We perform a spectral analysis of the dispersive and dissipative properties of two time-splitting procedures, namely, locally one-dimensional (LOD) Lax-Wendroff and LOD (1, 5) [9] for the numerical solution of the 2D advection-diffusion equation. We solve a 2D numerical experiment described by an advection-diffusion partial differential equation with specified initial and boundary conditions for which the exact solution is known. Some errors are computed, namely, the error rate with respect to theL1norm, dispersion and dissipation errors. Lastly, an optimization technique is implemented to find the optimal value of temporal step size that minimizes the dispersion error for both schemes when the spatial step is chosen as 0.025, and this is validated by numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document