Modified KdV–Zakharov–Kuznetsov dynamical equation in a homogeneous magnetised electron–positron–ion plasma and its dispersive solitary wave solutions

Pramana ◽  
2018 ◽  
Vol 91 (2) ◽  
Author(s):  
Abdullah ◽  
Aly R Seadawy ◽  
Jun Wang
2020 ◽  
Vol 34 (30) ◽  
pp. 2050289
Author(s):  
Abdulghani R. Alharbi ◽  
M. B. Almatrafi ◽  
Aly R. Seadawy

The Kudryashov technique is employed to extract several classes of solitary wave solutions for the Joseph–Egri equation. The stability of the achieved solutions is tested. The numerical solution of this equation is also investigated. We also present the accuracy and the stability of the numerical schemes. Some two- and three-dimensional figures are shown to present the solutions on some specific domains. The used methods are found useful to be applied on other nonlinear evolution equations.


2018 ◽  
Vol 33 (37) ◽  
pp. 1850217 ◽  
Author(s):  
Mujahid Iqbal ◽  
Aly R. Seadawy ◽  
Dianchen Lu

In this work, we consider the propagation of one-dimensional nonlinear unmagnetized dusty plasma, by using the reductive perturbation technique to formulate the nonlinear mathematical model which is further modified Korteweg–de Vries (fmKdV) dynamical equation. We use the extend form of two methods, auxiliary equation mapping and direct algebraic methods, to investigate the families of dust and ion solitary wave solutions of one-dimensional nonlinear fmKdV. These new exact and solitary wave solutions, which represent the electrostatic potential and pressure for fmKdV, and also the graphical representation of electrostatic potential and pressure are shown with the aid of Mathematica.


Sign in / Sign up

Export Citation Format

Share Document