Instability dynamics in gyrogravitating astroclouds with cosmic ray moderation in non-ideal MHD fabric

Pramana ◽  
2021 ◽  
Vol 95 (4) ◽  
Author(s):  
Pranamika Dutta ◽  
Pralay Kumar Karmakar
Keyword(s):  
2010 ◽  
Vol 6 (S276) ◽  
pp. 418-419
Author(s):  
Mario Flock ◽  
Neal Turner ◽  
Natalia Dzyurkevich ◽  
Hubert Klahr

AbstractWe present 3D global non-ideal MHD simulations with a self consistent dynamic evolution of ionization fraction of the gas as result of reduced chemical network. We include X-ray ionization from the star as well as cosmic ray ionization. Based on local gas density and temperature in our chemical network, we determine the magnetic resistivity, which is fed back in MHD simulations. Parameters for dust size and abundance are chosen to have accreting layers and a laminar “dead” mid-plane.


1979 ◽  
Vol 44 ◽  
pp. 307-313
Author(s):  
D.S. Spicer

A possible relationship between the hot prominence transition sheath, increased internal turbulent and/or helical motion prior to prominence eruption and the prominence eruption (“disparition brusque”) is discussed. The associated darkening of the filament or brightening of the prominence is interpreted as a change in the prominence’s internal pressure gradient which, if of the correct sign, can lead to short wavelength turbulent convection within the prominence. Associated with such a pressure gradient change may be the alteration of the current density gradient within the prominence. Such a change in the current density gradient may also be due to the relative motion of the neighbouring plages thereby increasing the magnetic shear within the prominence, i.e., steepening the current density gradient. Depending on the magnitude of the current density gradient, i.e., magnetic shear, disruption of the prominence can occur by either a long wavelength ideal MHD helical (“kink”) convective instability and/or a long wavelength resistive helical (“kink”) convective instability (tearing mode). The long wavelength ideal MHD helical instability will lead to helical rotation and thus unwinding due to diamagnetic effects and plasma ejections due to convection. The long wavelength resistive helical instability will lead to both unwinding and plasma ejections, but also to accelerated plasma flow, long wavelength magnetic field filamentation, accelerated particles and long wavelength heating internal to the prominence.


1982 ◽  
Vol 43 (C8) ◽  
pp. C8-69-C8-88 ◽  
Author(s):  
B. Rossi
Keyword(s):  

2010 ◽  
Vol 180 (5) ◽  
pp. 519 ◽  
Author(s):  
L.I. Dorman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document