scholarly journals A three-dimensional solution of hydraulic fracture width for wellbore strengthening applications

2019 ◽  
Vol 16 (4) ◽  
pp. 808-815 ◽  
Author(s):  
Jincai Zhang ◽  
Shangxian Yin
1994 ◽  
Vol 116 (1) ◽  
pp. 2-9 ◽  
Author(s):  
T. S. Lee ◽  
S. H. Advani ◽  
C. K. Pak

A three-dimensional hydraulic fracture simulator (HYFFIX) is reformulated using finite element methodology and a newly adapted fixed grid. The numerical procedures for the coupled equations governing the fracture width, fluid pressure, and evolution of equilibrium planar crack in layered media are summarized. Fixed grid mesh control algorithms for the efficient tracking of the moving crack/fracture fluid front are detailed. The introduction of these novel algorithms in the simulator makes it numerically efficient and stable, in comparison to previously reported models which utilize migrating mesh techniques. Due to the enhanced numerical efficiency and compactness of the refined code, the model can also be readily implemented on a workstation or microcomputer.


2021 ◽  
Author(s):  
Jiacheng Wang ◽  
Jon Olson

Abstract We propose an adaptive Eulerian-Lagrangian (E-L) proppant module and couple it with our simplified three-dimensional displacement discontinuity method (S3D DDM) hydraulic fracture model. The integrated model efficiently calculates proppant transport during three-dimensional (3D) hydraulic fracture propagation in multi-layer formations. The results demonstrate that hydraulic fracture height growth mitigates the form of proppant bed, so the proppant placement is more uniform in the hydraulic fracture under a smaller stress contrast. A higher fracturing fluid viscosity improves the suspension of proppant particles and generates a fracture larger in height and width but shorter in length. Lower proppant density and particle size reduce the proppant settling and create more uniform proppant placements, while they do not affect the hydraulic fracture geometry. Moreover, a larger proppant particle size limits the accessibility of the hydraulic fracture to the proppant, so the larger proppant particles do not fill the fracture tip and edge where the fracture width is small.


2021 ◽  
Author(s):  
Chee Phuat Tan ◽  
Wan Nur Safawati Wan Mohd Zainudin ◽  
M Solehuddin Razak ◽  
Siti Shahara Zakaria ◽  
Thanavathy Patma Nesan ◽  
...  

Abstract Drilling in permeable formations, especially depleted reservoirs, can particularly benefit from simultaneous wellbore shielding and strengthening functionalities of drilling mud compounds. The ability to generate simultaneous wellbore shielding and strengthening in reservoirs has potential to widen stable mud weight windows to drill such reservoirs without the need to switch from wellbore strengthening compound to wellbore shielding compound, and vice-versa. Wellbore shielding and strengthening experiments were conducted on three outcrop sandstones with three mud compounds. The wellbore shielding stage was conducted by increasing the confining and borehole pressures in 4-5 steps until both reached target pressures. CT scan images demonstrate consistency of the filtration rates with observed CT scanned mud cakes which are dependent on the sandstone pore size and mud compound particle size distributions. In wellbore strengthening stage, the borehole pressure was increased until fracture was initiated, which was detected via borehole pressure trend and CT scan imaging. The fractures generated were observed to be plugged by mud filter solids which are visible in the CT scan images. The extent of observed fracture solid plugging varies with rock elastic properties, fracture width and mud compound particle size distribution. Based on the laboratory test data, fracture gradient enhancement concept was developed for the mud compounds. In addition, the data obtained and observations from the tests were used to develop optimal empirical design criteria and guidelines to achieve dual wellbore strengthening and shielding performance of the mud compounds. The design criteria were validated on a well which was treated with one of the mud compounds based on its mud loss events during drilling and running casing.


Biochemistry ◽  
1996 ◽  
Vol 35 (43) ◽  
pp. 13788-13796 ◽  
Author(s):  
Paolo Baistrocchi ◽  
Lucia Banci ◽  
Ivano Bertini ◽  
Paola Turano ◽  
Kara L. Bren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document