An efficient numerical method for a nonlinear system of singularly perturbed differential equations arising in a two-time scale system

Author(s):  
Manikandan Mariappan ◽  
Ayyadurai Tamilselvan
BIOMATH ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 1608111
Author(s):  
Ishwariya Raj ◽  
Princy Mercy Johnson ◽  
John J.H Miller ◽  
Valarmathi Sigamani

In this paper an initial value problem for a non-linear system of two singularly perturbed first order differential equations is considered on the interval (0,1].The components of the solution of this system exhibit initial layers at 0. A numerical method composed of a classical finite difference scheme on a piecewise uniform Shishkin mesh is suggested. This method is proved to be almost first order convergent in the maximum norm uniformly in the perturbation parameters.


2017 ◽  
Vol 21 (4) ◽  
pp. 1595-1599 ◽  
Author(s):  
Yulan Wang ◽  
Dan Tian ◽  
Zhiyuan Li

The barycentric interpolation collocation method is discussed in this paper, which is not valid for singularly perturbed delay partial differential equations. A modified version is proposed to overcome this disadvantage. Two numerical examples are provided to show the effectiveness of the present method.


Author(s):  
A. S. V. Ravi Kanth ◽  
P. Murali Mohan Kumar

AbstractIn this paper, we study the numerical method for a class of nonlinear singularly perturbed delay differential equations using parametric cubic spline. Quasilinearization process is applied to convert the nonlinear singularly perturbed delay differential equations into a sequence of linear singularly perturbed delay differential equations. When the delay is not sufficiently smaller order of the singular perturbation parameter, the approach of expanding the delay term in Taylor’s series may lead to bad approximation. To handle the delay term, we construct a special type of mesh in such a way that the term containing delay lies on nodal points after discretization. The parametric cubic spline is presented for solving sequence of linear singularly perturbed delay differential equations. The error analysis of the method is presented and shows second-order convergence. The effect of delay parameter on the boundary layer behavior of the solution is discussed with two test examples.


Sign in / Sign up

Export Citation Format

Share Document