A new approach to improving the responsiveness to price fluctuations of the range estimating model through autocorrelation time-series analysis

2013 ◽  
Vol 17 (2) ◽  
pp. 301-308
Author(s):  
Sung-Chul Park ◽  
June-Seong Yi ◽  
Kyo-Jin Koo ◽  
Bonsang Koo
Author(s):  
YU-YUN HSU ◽  
SZE-MAN TSE ◽  
BERLIN WU

In recent years, the innovation and improvement of forecasting techniques have caught more and more attention. Especially, in the fields of financial economics, management planning and control, forecasting provides indispensable information in decision-making process. If we merely use the time series with the closing price array to build a forecasting model, a question that arises is: Can the model exhibit the real case honestly? Since, the daily closing price of a stock index is uncertain and indistinct. A decision for biased future trend may result in the danger of huge lost. Moreover, there are many factors that influence daily closing price, such as trading volume and exchange rate, and so on. In this research, we propose a new approach for a bivariate fuzzy time series analysis and forecasting through fuzzy relation equations. An empirical study on closing price and trading volume of a bivariate fuzzy time series model for Taiwan Weighted Stock Index is constructed. The performance of linguistic forecasting and the comparison with the bivariate ARMA model are also illustrated.


Author(s):  
Seng Hansun ◽  
Subanar Subanar

      Abstract— Recently, many soft computing methods have been used and implemented in time series analysis. One of the methods is fuzzy hybrid model which has been designed and developed to improve the accuracy of time series prediction.      Popoola has developed a fuzzy hybrid model which using wavelet transformation as a pre-processing tool, and commonly known as fuzzy-wavelet method. In this thesis, a new approach of fuzzy-wavelet method has been introduced. If in Popoola’s fuzzy-wavelet, a fuzzy inference system is built for each decomposition data, then on the new approach only two fuzzy inference systems will be needed. By that way, the computation needed in time series analysis can be pressed.      The research is continued by making new software that can be used to analyze any given time series data based on the forecasting method applied. As a comparison there are three forecasting methods implemented on the software, i.e. fuzzy conventional method, Popoola’s fuzzy-wavelet, and the new approach of fuzzy-wavelet method. The software can be used in short-term forecasting (single-step forecast) and long-term forecasting. There are some limitation to the software, i.e. maximum data can be predicted is 300, maximum interval can be built is 7, and maximum transformation level can be used is 10. Furthermore, the accuracy and robustness of the proposed method will be compared to the other forecasting methods, so that can give us a brief description about the accuracy and robustness of the proposed method. Keywords—  fuzzy, wavelet, time series, soft computing


Author(s):  
José M. Amigó ◽  
Karsten Keller ◽  
Valentina A. Unakafova

Ordinal symbolic analysis opens an interesting and powerful perspective on time-series analysis. Here, we review this relatively new approach and highlight its relation to symbolic dynamics and representations. Our exposition reaches from the general ideas up to recent developments, with special emphasis on its applications to biomedical recordings. The latter will be illustrated with epilepsy data.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Ade Gusalinda ◽  
I Made Sumertajaya ◽  
Septian Rahardiantoro

One of the commodities that has quite varied price fluctuations is broiler and carcass chicken. The context of forecasting is quite important considering the policies that can be taken by the producer and even the strategies that can be taken by consumers. This study attempts to modeling broiler and carcass prices together with Vector Autoregressive (VAR) which is one method in time series analysis that utilizes more than one time series variable. In addition, the effect of calendar calendar events is also the topic of discussion in this study which is implemented by the VAR-X method. As a result, the calendar effects variables that affect broiler and carcass prices are February, the first week of Ramadan and Eid-ul-Fitr. Furthermore, forecasting with VAR-X produces a pretty good value than VAR with lower MAPE criteria.


Sign in / Sign up

Export Citation Format

Share Document