Flexural Behavior of Cracked RC Beams Retrofitted with Strain Hardening Cementitious Composites

2019 ◽  
Vol 23 (6) ◽  
pp. 2644-2656 ◽  
Author(s):  
Ali Basha ◽  
Sabry Fayed ◽  
Galal Elsamak
2021 ◽  
Vol 16 ◽  
pp. 155892502110203
Author(s):  
Mohammad Iqbal Khan ◽  
Galal Fares ◽  
Yassir Mohammed Abbas ◽  
Wasim Abbass ◽  
Sardar Umer Sial

Strain-hardening cement-based composites (SHCC) have recently been developed as repair materials for the improvement of crack control and strength of flexural members. This work focuses on strengthening and flexural enhancement using SHCC layer in tensile regions of flexural members under three different curing conditions. The curing conditions simulate the effect of different environmental conditions prevailing in the central and coastal regions of the Arabian Peninsula on the properties of SHCC as a retrofitting material. In this investigation, beams with SHCC layer were compared to control beams. The beams with SHCC layer of 50-mm thickness were cast. The results revealed that the flexural behavior and the load-carrying capacity of the normal concrete beam specimens under hot and dry environmental conditions were significantly reduced, lowering the ductility of the section. However, compressive strength is comparatively unaffected. Similarly, the hot curing conditions have also led to a notable reduction in the loading capacity of the beam with SHCC layer with a slight effect on its stiffness. On the other hand, steam-curing conditions have shown improvement in load-carrying capacity and a reduction in section ductility of the beam with SHCC layer. It was found that the structural unit retrofitted with SHCC layer was a curing-regime dependent as the tensile and strain-hardening properties of SHCC are highly sensitive to the alteration in the cement hydration process. A normal curing regime was found effective and satisfying the practical, cost, and performance requirements. Accordingly, a normal curing regime could be implemented to retrofit reinforced concrete (RC) beams with SHCC layers as recommended in the study.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 113 ◽  
Author(s):  
Zhanfeng Qi ◽  
Zhiyi Huang ◽  
Hui Li ◽  
Wenhua Chen

Strain hardening cementitious composites (SHCCs) are widely used in projects due to their excellent deformation resistance and large energy absorption capacity. However, determining tensile strain capacity is still a challenge for engineers. The current popular approach is to use inverse methods to predict the tensile behavior of SHCCs, such as the UM method (Qian and Li) and the JCI (Japan Concrete Institute) method. The key to these two approaches is to acquire the exact relationship between the bending and the uniaxial response. In this paper, a reasonable linear constitutive model of the SHCCs is modified. Initially, the moment-curvature diagrams are discussed by material parameters. The results reveal that the moment-curvature response is quite sensitive to the variations in the parameter of transition strain α, post-cracking tensile stiffness η, and strain softening stiffness μ, however, for the compressive parameters, the moment-curvature responses influence on flexural behavior is insignificant. Moreover, the load-deflection curve in the mid-span of SHCC, based on the consideration of shear effect, is simulated under a four-point bending test (FPBT). The results show a remarkable consistency with the experimental data when compared to the previous simulations. It is expected that this modified method can enhance an accurate program in order to obtain the tensile capacity.


2021 ◽  
pp. 100775
Author(s):  
Bo-Tao Huang ◽  
Ke-Fan Weng ◽  
Ji-Xiang Zhu ◽  
Yu Xiang ◽  
Jian-Guo Dai ◽  
...  

2021 ◽  
Vol 233 ◽  
pp. 111801
Author(s):  
Changyuan Liu ◽  
Xin Wang ◽  
Jianzhe Shi ◽  
Lulu Liu ◽  
Zhishen Wu

Sign in / Sign up

Export Citation Format

Share Document