Influence of curing conditions on the mechanical performance of ultra-high-performance strain-hardening cementitious composites

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Min-Jae Kim ◽  
Taekgeun Oh ◽  
Doo-Yeol Yoo
2011 ◽  
Vol 261-263 ◽  
pp. 223-227 ◽  
Author(s):  
Xiang Rong Cai ◽  
Bai Quan Fu ◽  
Shi Lang Xu

A new class of high performance fiber reinforced cementitious composites called Ultra High Toughness Cementitious Composites (UHTCC) is developed in the last few years. It is a pseudo strain hardening material with maximum tensile strain capacity more than 3%, yet the fiber volume fraction no more than 2%. The multiple cracking patterns accompanying pseudo strain hardening behavior are obtained which implies high ductility, energy absorption capacity, and toughness. A remarkable characteristic distinguish it from conventional high performance fiber reinforced concrete is the maximum crack width of multiple cracks which is about 60µm under ultimate tensile load. Such micro-cracks are often small enough to prevent the intrusion of aggressive agents. From a durability point of view this composite can be considered as an effectively uncracked material. The performances of this new material, including the apparent density, the uniaxial tensile property, and the drying shrinkage performance, are experimental studied in this paper.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2253
Author(s):  
Stefan Chaves Figueiredo ◽  
Claudia Romero Rodríguez ◽  
Zeeshan Y. Ahmed ◽  
Derk H. Bos ◽  
Yading Xu ◽  
...  

Extrusion based additive manufacturing of cementitious materials has demonstrated strong potential to become widely used in the construction industry. However, the use of this technique in practice is conditioned by a feasible solution to implement reinforcement in such automated process. One of the most successful ductile materials in civil engineering, strain hardening cementitious composites (SHCC) have a high potential to be employed for three-dimensional printing. The match between the tailored brittle matrix and ductility of the fibres enables these composites to develop multiple cracks when loaded under tension. Using previously developed mixtures, this study investigates the physical and mechanical performance of printed SHCC. The anisotropic behavior of the materials is explored by means of mechanical tests in several directions and micro computed tomography tests. The results demonstrated a composite showing strain hardening behavior in two directions explained by the fibre orientation found in the printed elements. Moreover, the printing technique used also has guaranteed an enhanced bond in between the printed layers.


2013 ◽  
Vol 709 ◽  
pp. 122-126
Author(s):  
Heng Mao Niu ◽  
Yong Ming Xing ◽  
Yan Ru Zhao

Engineered cementitious composites (ECC) are characterized by strain hardening and tight crack width control. Good fiber distribution can maximize fiber contribution. Processing can substantially influence fiber distribution, and consequently influence mechanical performance. Combined with the latest research results, this review summarizes the results of several studies in which the influence of processing on fiber distribution and mechanical performance was investigated. Based on the reviewed methods it is argued that the processing technique of producing ECC can improve fiber distribution.


2021 ◽  
Vol 11 (5) ◽  
pp. 2394
Author(s):  
Min-Jae Kim ◽  
Booki Chun ◽  
Hong-Joon Choi ◽  
Wonsik Shin ◽  
Doo-Yeol Yoo

This study investigated the influence of ordinary Portland cement (OPC) and reactive and non-reactive mineral additives on the characteristic microstructure and mechanical performance of ultra-high-performance, strain-hardening cementitious composites (UHP–SHCCs). Nine mixes of cementitious composites were considered composed of reactive and non-reactive materials, such as ground granulated blast furnace slag (GGBS), silica fume (SF), cement kiln dust (CKD), and silica flour. Compressive strength and direct tensile tests were performed on the nine mixes cured for 7 d and 28 d. The test result was analyzed based on microstructural inspections, including thermogravimetry and scanning electron microscopy. The test result and analysis showed that the microstructural property of the UHP–SHCC impacted the compressive strength and the tensile behavior and also influenced the fiber-matrix interaction. Although most of the 7 d cured specimens did not exhibit notable strain-hardening behaviors, the specimen containing the CKD exhibited a tensile strength of 11.6 MPa and a very high strain capacity of 7.5%. All the specimens with OPC, silica flour, GGBS, or SF exhibited considerably improved tensile behavior at 28 d. The specimen with only OPC as a binder could achieve the tensile strength of 11.6 MPa and strain capacity of 6.2%.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 215
Author(s):  
Dong Lu ◽  
Jing Zhong ◽  
Baobao Yan ◽  
Jing Gong ◽  
Ziye He ◽  
...  

It has been reported that iron tailing powder (ITP) has the potential to partially replace cement to prepare ultra-high-performance concrete (UHPC). However, the reactivity of ITP particles in concrete largely depends on the curing method. This study investigates the effects of curing conditions on the mechanical and microstructural properties of UHPC containing ITP. To achieve this objective, three research tasks are conducted, including (1) preparing seven concrete formulations by introducing ITP; (2) characterizing their mechanical performance under different curing regimes; and (3) analyzing their microstructure by XRD patterns, FTIR analysis, and SEM observation. The experimental results show that there is an optimum ITP dosage (15%) for their application. The concrete with 15% ITP under standard curing obtains 94.3 MPa at 7 days, their early-age strength could be even further increased by ~30% (warm-water curing) and ~35% (steamed curing). The steam curing regime stimulates the activity of ITP and refines the microstructure. This study demonstrates the potential of replacing Portland cement with ITP in UHPC production.


Sign in / Sign up

Export Citation Format

Share Document