Model-based fault detection and isolation in steer-by-wire vehicle using sliding mode observer

2009 ◽  
Vol 23 (8) ◽  
pp. 1991-1999 ◽  
Author(s):  
Jae Sung Im ◽  
Fuminori Ozaki ◽  
Tae Kyeong Yeu ◽  
Shigeyasu Kawaji
2015 ◽  
Vol 48 (21) ◽  
pp. 164-170 ◽  
Author(s):  
H. Meziane ◽  
C. Labarre ◽  
S. Lefteriu ◽  
M. Defoort ◽  
M. Djemai

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Shulan Kong ◽  
Mehrdad Saif ◽  
Guozeng Cui

This study investigates estimation and fault diagnosis of fractional-order Lithium-ion battery system. Two simple and common types of observers are designed to address the design of fault diagnosis and estimation for the fractional-order systems. Fractional-order Luenberger observers are employed to generate residuals which are then used to investigate the feasibility of model based fault detection and isolation. Once a fault is detected and isolated, a fractional-order sliding mode observer is constructed to provide an estimate of the isolated fault. The paper presents some theoretical results for designing stable observers and fault estimators. In particular, the notion of stability in the sense of Mittag-Leffler is first introduced to discuss the state estimation error dynamics. Overall, the design of the Luenberger observer as well as the sliding mode observer can accomplish fault detection, fault isolation, and estimation. The effectiveness of the proposed strategy on a three-cell battery string system is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document