Natural convection in a square enclosure with a circular cylinder with adiabatic side walls according to bottom wall temperature variation

2018 ◽  
Vol 32 (7) ◽  
pp. 3201-3211 ◽  
Author(s):  
Jaehyun Park ◽  
Minsung Kim ◽  
Gi Su Mun ◽  
Yong Gap Park ◽  
Man Yeong Ha
Author(s):  
Mohd. Ashique Hassan ◽  
Manabendra Pathak ◽  
Mohd. Kaleem Khan

In this study a computational investigation of two-dimensional, steady-state, natural convection of viscoplastic fluid in a square enclosure has been presented. The enclosure has been locally heated from the bottom wall using a constant heat flux source and symmetrically cooled from both the side walls. The other walls are maintained as insulated surfaces. Finite volume based code has been used in the simulation and Bingham model has been used to model the rheology of the enclosed viscoplastic fluids. Simulations have been made for three different heating lengths of the bottom wall. The flow phenomenon and heat transfer inside the enclosure have been investigated for different properties of viscoplastic fluid, heating conditions and heated length. It has been observed that for a particular thermal condition the heat transfer coefficient or the Nusselt number decrease with the increase in yield stress value of the fluid due to weakening of convective circulation.


Heat Transfer ◽  
2020 ◽  
Vol 49 (8) ◽  
pp. 4173-4203
Author(s):  
Saba Y. Ahmed ◽  
Mohammed Y. Jabbar ◽  
Hameed K. Hamzah ◽  
Farooq H. Ali ◽  
Ahmed K. Hussein

2020 ◽  
Vol 16 (5) ◽  
pp. 1245-1259
Author(s):  
Mohammad Saeid Aghighi ◽  
Christel Metivier ◽  
Hamed Masoumi

PurposeThe purpose of this paper is to analyze the natural convection of a yield stress fluid in a square enclosure with differentially heated side walls. In particular, the Casson model is considered which is a commonly used model.Design/methodology/approachThe coupled conservation equations of mass, momentum and energy related to the two-dimensional steady-state natural convection within square enclosures are solved numerically by using the Galerkin's weighted residual finite element method with quadrilateral, eight nodes elements.FindingsResults highlight a small degree of the shear-thinning in the Casson fluids. It is shown that the yield stress has a stabilizing effect since the convection can stop for yield stress fluids while this is not the case for Newtonian fluids. The heat transfer rate, velocity and Yc obtained with the Casson model have the smallest values compared to other viscoplastic models. Results highlight a weak dependence of Yc with the Rayleigh number: Yc∼Ra0.07. A supercritical bifurcation at the transition between the convective and the conductive regimes is found.Originality/valueThe originality of the present study concerns the comprehensive and detailed solutions of the natural convection of Casson fluids in square enclosures with differentially heated side walls. It is shown that there exists a major difference between the cases of Casson and Bingham models, and hence using the Bingham model for analyzing the viscoplastic behavior of the fluids which follow the Casson model (such as blood) may not be accurate. Finally, a correlation is proposed for the mean Nusselt number Nu¯.


Author(s):  
Ammar I. Alsabery ◽  
Ishak Hashim ◽  
Ali J. Chamkha ◽  
Habibis Saleh ◽  
Bilal Chanane

Purpose This paper aims to study analytically and numerically the problem of transient natural convection heat transfer in a trapezoidal cavity with spatial side-wall temperature variation. Design/methodology/approach The governing equations subject to the initial and boundary conditions are solved numerically by the finite difference scheme consisting of the alternating direction implicit method and the tri-diagonal matrix algorithm. The left sloping wall of the cavity is heated to non-uniform temperature, and the right sloping wall is maintained at a constant cold temperature, while the horizontal walls are kept adiabatic. Findings It is shown that the heat transfer rate increases in non-uniform heating increments, whereby low wave number values are more affected by the convection. The best heat transfer enhancement results from larger side wall inclination angle; however, trapezoidal cavities require longer time compared to that of square to reach steady state. Originality/value The study of natural convection heat transfer in a trapezoidal cavity filled with nanofluid and heated by spatial side-wall temperature has not yet been undertaken. Thus, the authors of the present study believe that this work is valuable.


Sign in / Sign up

Export Citation Format

Share Document