Strong convergence of the viscosity approximation method for the split generalized equilibrium problem

Author(s):  
Withun Phuengrattana ◽  
Chalongchai Klanarong
2015 ◽  
Vol 4 (2) ◽  
pp. 299
Author(s):  
Mandeep Kumari ◽  
Renu Chugh

<p>In 2010, Victoria Martin Marquez studied a nonexpansive mapping in Hadamard manifolds using Viscosity approximation method. Our goal in this paper is to study the strong convergence of the Viscosity approximation method in Hadamard manifolds. Our results improve and extend the recent research in the framework of Hadamard manifolds.</p>


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1307
Author(s):  
Lili Chen ◽  
Ni Yang ◽  
Jing Zhou

In this paper, we first propose the concepts of (ζ,η,λ,π)-generalized hybrid multi-valued mappings, the set of all the common attractive points (CAf,g) and the set of all the common strongly attractive points (CsAf,g), respectively for the multi-valued mappings f and g in a CAT(0) space. Moreover, we give some elementary properties in regard to the sets Af, Ff and CAf,g for the multi-valued mappings f and g in a complete CAT(0) space. Furthermore, we present a weak convergence theorem of common attractive points for two (ζ,η,λ,π)-generalized hybrid multi-valued mappings in the above space by virtue of Banach limits technique and Ishikawa iteration respectively. Finally, we prove strong convergence of a new viscosity approximation method for two (ζ,η,λ,π)-generalized hybrid multi-valued mappings in CAT(0) spaces, which also solves a kind of variational inequality problem.


2014 ◽  
Vol 47 (2) ◽  
Author(s):  
P. Cholamjiak ◽  
W. Cholamjiak ◽  
S. Suantai

AbstractIn this paper, strong convergence theorems by the viscosity approximation method for nonexpansive multi-valued nonself mappings and equilibrium problems are established under some suitable conditions in a Hilbert space. The obtained results extend and improve the corresponding results existed in the literature.


Sign in / Sign up

Export Citation Format

Share Document