viscosity approximation
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Constantijn J. Berends ◽  
Heiko Goelzer ◽  
Thomas J. Reerink ◽  
Lennert B. Stap ◽  
Roderik S. W. van de Wal

Abstract. Ice-dynamical processes constitute a large uncertainty in future projections of sea-level rise caused by anthropogenic climate change. Improving our understanding of these processes requires ice-sheet models that perform well at simulating both past and future ice-sheet evolution. Here, we present version 2.0 of the ice-sheet model IMAU-ICE, which uses the depth-integrated viscosity approximation (DIVA) to solve the stress balance. We evaluate its performance in a range of benchmark experiments, including simple analytical solutions, as well as both schematic and realistic model intercomparison exercises. IMAU-ICE has adopted recent developments in the numerical treatment of englacial stress and sub-shelf melt near the grounding-line, which result in good performance in experiments concerning grounding-line migration (MISMIP) and buttressing (ABUMIP). This makes it a model that is robust, versatile, and user-friendly, and which will provide a firm basis for (palaeo-)glaciological research in the coming years.


Author(s):  
Godwin Ugwunnadi

In this paper, we study the implicit and inertial-type viscosity approximation method for approximating a solution to the hierarchical variational inequality problem. Under some mild conditions on the parameters, we prove that the sequence generated by the proposed methods converges strongly to a solution of the above-mentioned problem in $q$-uniformly smooth Banach spaces. The results obtained in this paper generalize and improve many recent results in this direction.


2021 ◽  
pp. 1-27
Author(s):  
Junho Choi ◽  
Youngjoon Hong ◽  
Chang-Yeol Jung ◽  
Hoyeon Lee

Axioms ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Hammed Anuoluwapo Abass ◽  
Lateef Olakunle Jolaoso

In this paper, we propose a generalized viscosity iterative algorithm which includes a sequence of contractions and a self adaptive step size for approximating a common solution of a multiple-set split feasibility problem and fixed point problem for countable families of k-strictly pseudononspeading mappings in the framework of real Hilbert spaces. The advantage of the step size introduced in our algorithm is that it does not require the computation of the Lipschitz constant of the gradient operator which is very difficult in practice. We also introduce an inertial process version of the generalize viscosity approximation method with self adaptive step size. We prove strong convergence results for the sequences generated by the algorithms for solving the aforementioned problems and present some numerical examples to show the efficiency and accuracy of our algorithm. The results presented in this paper extends and complements many recent results in the literature.


Sign in / Sign up

Export Citation Format

Share Document