viscosity approximation method
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Godwin Ugwunnadi

In this paper, we study the implicit and inertial-type viscosity approximation method for approximating a solution to the hierarchical variational inequality problem. Under some mild conditions on the parameters, we prove that the sequence generated by the proposed methods converges strongly to a solution of the above-mentioned problem in $q$-uniformly smooth Banach spaces. The results obtained in this paper generalize and improve many recent results in this direction.



Axioms ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Hammed Anuoluwapo Abass ◽  
Lateef Olakunle Jolaoso

In this paper, we propose a generalized viscosity iterative algorithm which includes a sequence of contractions and a self adaptive step size for approximating a common solution of a multiple-set split feasibility problem and fixed point problem for countable families of k-strictly pseudononspeading mappings in the framework of real Hilbert spaces. The advantage of the step size introduced in our algorithm is that it does not require the computation of the Lipschitz constant of the gradient operator which is very difficult in practice. We also introduce an inertial process version of the generalize viscosity approximation method with self adaptive step size. We prove strong convergence results for the sequences generated by the algorithms for solving the aforementioned problems and present some numerical examples to show the efficiency and accuracy of our algorithm. The results presented in this paper extends and complements many recent results in the literature.





Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1307
Author(s):  
Lili Chen ◽  
Ni Yang ◽  
Jing Zhou

In this paper, we first propose the concepts of (ζ,η,λ,π)-generalized hybrid multi-valued mappings, the set of all the common attractive points (CAf,g) and the set of all the common strongly attractive points (CsAf,g), respectively for the multi-valued mappings f and g in a CAT(0) space. Moreover, we give some elementary properties in regard to the sets Af, Ff and CAf,g for the multi-valued mappings f and g in a complete CAT(0) space. Furthermore, we present a weak convergence theorem of common attractive points for two (ζ,η,λ,π)-generalized hybrid multi-valued mappings in the above space by virtue of Banach limits technique and Ishikawa iteration respectively. Finally, we prove strong convergence of a new viscosity approximation method for two (ζ,η,λ,π)-generalized hybrid multi-valued mappings in CAT(0) spaces, which also solves a kind of variational inequality problem.



Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1153
Author(s):  
Najla Altwaijry ◽  
Tahani Aldhaban ◽  
Souhail Chebbi ◽  
Hong-Kun Xu

We show that the viscosity approximation method coupled with the Krasnoselskii–Mann iteration generates a sequence that strongly converges to a fixed point of a given nonexpansive mapping in the setting of uniformly smooth Banach spaces. Our result shows that the geometric property (i.e., uniform smoothness) of the underlying space plays a role in relaxing the conditions on the choice of regularization parameters and step sizes in iterative methods.



2019 ◽  
Vol 52 (1) ◽  
pp. 347-360
Author(s):  
Mujahid Abbas ◽  
Hira Iqbal ◽  
Manuel de la Sen

AbstractWe prove strong convergence of the sequence generated by implicit viscosity approximation method involving a multivalued nonexpansive mapping in framework of CAT(0) space. Under certain appropriate conditions on parameters, we show that such a sequence converges strongly to a fixed point of the mapping which solves a variational inequality. We also present some convergence results for the implicit viscosity approximation method in complete ℝ-trees without the endpoint condition.





Sign in / Sign up

Export Citation Format

Share Document