Effect of Static Deformation on Basic Flow Patterns in Thermocapillary-Driven Free Liquid Film

2016 ◽  
Vol 29 (1-2) ◽  
pp. 29-36 ◽  
Author(s):  
Linhao Fei ◽  
Koichi Ikebukuro ◽  
Takeshi Katsuta ◽  
Toshihiro Kaneko ◽  
Ichiro Ueno ◽  
...  
2014 ◽  
Vol 762 ◽  
pp. 68-109 ◽  
Author(s):  
Georg F. Dietze ◽  
Christian Ruyer-Quil

AbstractWe consider the axisymmetric arrangement of an annular liquid film, coating the inner surface of a narrow cylindrical tube, in interaction with an active core fluid. We introduce a low-dimensional model based on the two-phase weighted residual integral boundary layer (WRIBL) formalism (Dietze & Ruyer-Quil, J. Fluid Mech., vol. 722, 2013, pp. 348–393) which is able to capture the long-wave instabilities characterizing such flows. Our model improves upon existing works by fully representing interfacial coupling and accounting for inertia as well as streamwise viscous diffusion in both phases. We apply this model to gravity-free liquid-film/core-fluid arrangements in narrow capillaries with specific attention to the dynamics leading to flooding, i.e. when the liquid film drains into large-amplitude collars that occlude the tube cross-section. We do this against the background of linear stability calculations and nonlinear two-phase direct numerical simulations (DNS). Due to the improvements of our model, we have found a number of novel/salient physical features of these flows. First, we show that it is essential to account for inertia and full interphase coupling to capture the temporal evolution of flooding for fluid combinations that are not dominated by viscosity, e.g. water/air and water/silicone oil. Second, we elucidate a viscous-blocking mechanism which drastically delays flooding in thin films that are too thick to form unduloids. This mechanism involves buckling of the residual film between two liquid collars, generating two very pronounced film troughs where viscous dissipation is drastically increased and growth effectively arrested. Only at very long times does breaking of symmetry in this region (due to small perturbations) initiate a sliding motion of the liquid film similar to observations by Lister et al. (J. Fluid Mech., vol. 552, 2006, pp. 311–343) in thin non-flooding films. This kickstarts the growth of liquid collars anew and ultimately leads to flooding. We show that streamwise viscous diffusion is essential to this mechanism. Low-frequency core-flow oscillations, such as occur in human pulmonary capillaries, are found to set off this sliding-induced flooding mechanism much earlier.


Author(s):  
Yu Gan ◽  
Van P. Carey

Theoretical models and MD simulation studies suggest that dissolved salts tend to alter the surface tension at liquid vapor interfaces and affect the stability of the free liquid film between adjacent bubbles. Recent modeling of the Leidenfrost phenomenon also indicates that bubble merging is a key mechanism affecting the Leidenfrost transition conditions. This investigation summarizes the results of an investigation of the effects of dissolved salts on liquid film stability and bubble merging in the aqueous solution. The interaction of pairs of bubbles injected into solution with different dissolved salt concentrations was studied experimentally to determine the probability of merging from statistics for ensembles of bubble pairs. The results of these experiments indicate that very low dissolved salt concentrations can strongly reduce the tendency of adjacent bubbles to merge, implying that the presence of the dissolved salt in such cases strongly enhances the stability of the free liquid film between adjacent bubbles. The trends are compared to predictions of free liquid film stability by wave instability theory and MD simulations. These trends are also compared to experimental data indicating the effects of dissolved salt on the Leidenfrost transition. These comparisons indicate that the suppression of merging due to the effects of some dissolved salts can significantly alter the Leidenfrost transition conditions. The implications of this in quenching of cast aluminum or steel parts using water of variable hardness are also discussed.


1996 ◽  
Vol 118 (1) ◽  
pp. 68-73 ◽  
Author(s):  
S. Brodersen ◽  
D. E. Metzger ◽  
H. J. S. Fernando

In Part I of this investigation, the basic flow patterns resulting from the interaction of a turbulent jet and a rotating disk flow were presented paying particular attention to mean and turbulent velocity fields around the jet impingement point on the disk and the flow patterns above the disk in the absence of the jet. The latter was used as a base flow pattern, on which the influence of the jet impingement could be assessed. In Part II, further details of the jet/disk flow interaction problem are discussed in the context of potential turbomachinery cooling applications and previous experimental results.


Sign in / Sign up

Export Citation Format

Share Document