scholarly journals Harmonic Functions, Entropy, and a Characterization of the Hyperbolic Space

2007 ◽  
Vol 18 (1) ◽  
pp. 272-284 ◽  
Author(s):  
Xiaodong Wang
1993 ◽  
Vol 36 (3) ◽  
pp. 257-262 ◽  
Author(s):  
Pierre-Yves Gaillard

AbstractThe purpose for this short note is to describe the space of harmonic spinors on hyperbolicn-spaceHn. This is a natural continuation of the study of harmonic functions onHnin [Minemura] and [Helgason]—these results were generalized in the form of Helgason's conjecture, proved in [KKMOOT],—and of [Gaillard 1, 2], where harmonic forms onHnwere considered. The connection between invariant differential equations on a Riemannian semisimple symmetric spaceG/Kand homological aspects of the representation theory ofG, as exemplified in (8) below, does not seem to have been previously mentioned. This note is divided into three main parts respectively dedicated to the statement of the results, some reminders, and the proofs. I thank the referee for having suggested various improvements.


2019 ◽  
Vol 124 (1) ◽  
pp. 81-101
Author(s):  
Manfred Stoll

In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.


Sign in / Sign up

Export Citation Format

Share Document