Online Misalignment Estimation of Strapdown Navigation for Land Vehicle under Dynamic Condition

2021 ◽  
Vol 22 (6) ◽  
pp. 1723-1733
Author(s):  
Yoonjin Hwang ◽  
Yongseop Jeong ◽  
In So Kweon ◽  
Seibum Choi
1985 ◽  
Vol 54 (04) ◽  
pp. 857-861 ◽  
Author(s):  
Andrea Remuzzi ◽  
Lucia Raffaella Languino ◽  
Vincenzo Costantini ◽  
Vincenzo Guardabasso ◽  
Giovanni de Gartano ◽  
...  

SummaryThe adherence of human 3H-adenine-labeled platelets to rat subendothelium was quantitated using a rotating probe device. Platelet adhesion increased in relation to the rotation time, reaching a plateau value in about 4-6 min without any further increase. A non-linear fitting analysis of experimental data allowed calculations of initial rate and plateau value of platelet adhesion. Increasing the shear rates (from 35 to 150 sec-1) or the hematocrit (from 10% to 40%), both the adhesion rate and the plateau value were increased. When different platelet concentrations were used the adhesion rate and the plateau calculated increased with platelet concentration. Different plateau values were obtained in the experimental conditions considered. This suggests that the plateau was not reached for the complete occupation of the subendothelial surface by the adherent platelets. Experiments using two different vessels rotated in the same platelet suspension or, viceversa, the same vessel rotated successively in two fresh platelet suspensions, showed that the plateau was not determined by reduced platelet reactivity. Rotating the same vessel first in radiolabeled platelets, until the plateau was reached, and secondly in non labeled platelets, or viceversa, showed that the plateau was indeed a dynamic condition where the number of platelets adhering and detaching reached equilibrium. These observations suggest that the platelet adhesion to subendothelium is the final equilibrium of two platelet fluxes, one adhering to the surface and another detaching from the surface.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 153-160 ◽  
Author(s):  
S. H. Lee ◽  
S. Vigneswaran ◽  
K. Bajracharya

Excessive phosphorus (P as orthophosphate) is one of the major pollutants in natural water that are responsible for algal blooms and eutrophication. P removal by slag is an attractive solution if the P sorption capacity of slag is significant. To design an efficient land treatment facility, basic information on the behaviour of P in the media-water environment is required. In this study, detailed column experiments were conducted to study the P transport under dynamic condition, and mathematical models were developed to describe this process. The column experiments conducted with dust and cake waste products (slag) from a steel industry as adsorbing indicated that they had higher sorption capacity of P than that of a sandy loam soil from North Sydney, Australia. P transport in the dust and cake columns exhibited characteristic S-shaped or curvilinear breakthrough curves. The simulated results from a dynamic physical nonequilibrium sorption model (DPNSM) and Freundlich isotherm constants satisfactorily matched the corresponding experimental breakthrough data. The mobility of P is restricted by the adsorbents and it is proportional to the sorption capacity of them.


Sign in / Sign up

Export Citation Format

Share Document