natural gas reservoirs
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 27)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Pengda Cheng ◽  
Weijun Shen ◽  
Qingyan Xu ◽  
Xiaobing Lu ◽  
Chao Qian ◽  
...  

AbstractUnderstanding the changes of the near-wellbore pore pressure associated with the reservoir depletion is greatly significant for the development of ultra-deep natural gas reservoirs. However, there is still a great challenge for the fluid flow and geomechanics in the reservoir depletion. In this study, a fully coupled model was developed to simulate the near-wellbore and reservoir physics caused by pore pressure in ultra-deep natural gas reservoirs. The stress-dependent porosity and permeability models as well as geomechanics deformation induced by pore pressure were considered in this model, and the COMSOL Multiphysics was used to implement and solve the problem. The numerical model was validated by the reservoir depletion from Dabei gas field in China, and the effects of reservoir properties and production parameters on gas production, near-wellbore pore pressure and permeability evolution were discussed. The results show that the gas production rate increases nonlinearly with the increase in porosity, permeability and Young’s modulus. The lower reservoir porosity will result in the greater near-wellbore pore pressure and the larger rock deformation. The permeability changes have little effect on geomechanics deformation while it affects greatly the gas production rate in the reservoir depletion. With the increase in the gas production rate, the near-wellbore pore pressure and permeability decrease rapidly and tend to balance with time. The reservoir rocks with higher deformation capacity will cause the greater near-wellbore pore pressure.


2021 ◽  
Vol 14 (10) ◽  
Author(s):  
Alberto Maria Gambelli ◽  
Federico Rossi

AbstractIn both natural gas and petroleum reservoirs, the extracted gas is not only composed of methane: a variable and significant quantity of other compounds, such as different hydrocarbons (ethane, butane, pentane, propane, etc.), inert gas (nitrogen), and toxic and corrosive molecules (i.e., carbon dioxide and hydrogen sulfide), are present. In order to reach commercial specifications, natural gas has to be treated, in particular for reaching the minimum gross calorific value required and decreasing CO2 and H2S presence under the respective tolerance values. To do this, several different treatments are commonly applied, like inlet separation, sweetening, mercury removal, dehydration, liquid recovery, and, finally, compression for its transportation. Considering the growing demand and the necessity of exploiting also lower quality natural gas reservoirs, in the present paper, an original solution, for performing a gas treatment, is proposed and analyzed. It consists of promoting hydrates formation for both different compounds separation and gas storage. The greatest part of chemicals commonly present in natural gas is capable to form hydrates, but at different thermodynamic conditions than others. Parameters such as the typology of stored compound and the formation process efficiency are mainly related to partial pressure of each element. Here, the present strategy has been explored and the results achievable were shown. In particular, different possible natural gas compositions were taken into account and specifications required for gas commercialization were considered target of the process. Results led to different possibilities of raw gas treatment: in some cases, gas separation led to contemporary CH4 storage into hydrate structures, while, in the presence of different mixture compositions, contaminants were trapped into water cages and methane (and, eventually, other hydrocarbon compounds) remained in the gas phase.


Author(s):  
Shahdad Ghassemzadeh ◽  
Maria Gonzalez Perdomo ◽  
Manouchehr Haghighi ◽  
Ehsan Abbasnejad

Author(s):  
Sean T. Brennan ◽  
Jennifer L. Rivera ◽  
Brian A. Varela ◽  
Andy J. Park

2021 ◽  
Vol 248 ◽  
pp. 01071
Author(s):  
Tingwei Yao ◽  
Yang Zhang ◽  
Minhao Guo ◽  
Zhilin Tuo ◽  
Haiyang Wang ◽  
...  

In the process of continuous production of natural gas wells, formation pressure and gas flow rate decrease continuously. The ability to carry liquid decreases continuously, thus gradually forming bottom hole liquid. Bottom hole liquid accumulation is an important reason for the decrease of production or shutdown of natural gas wells. How to diagnose whether there is liquid accumulation in natural gas wells and identify the degree of liquid accumulation, to adopt drainage gas recovery operation in time, is the research focus of efficient development of natural gas reservoirs. In this paper, a method for diagnosing bottom hole liquid accumulation combining production performance curve and modified Fernando inclined well critical liquid-carrying model is designed for a large scale double-branch horizontal well used in unconventional reservoirs. The method is applied to the Well X2 of He 8 Member in PCOC. The application results showed that there was no liquid accumulation in the horizontal and vertical sections of the Well X2. The liquid in the wellbore was generated at the bottom of the inclined section and the liquid accumulation is upward along the wellbore from the bottom of the inclined section, with the height of 3 m.


Author(s):  
Richard Pemper ◽  

This paper provides a history of nuclear spectroscopy in well logging from its beginnings in 1939 up until the present day. After the invention and implementation of gamma ray logging, this paper traces the technological development of the pulsed-neutron capture (sigma) log, the spectral gamma ray log, the carbon-oxygen log, tracer identification logs, small-diameter reservoir characterization tools, and finally the geochemical log. The key to the science of nuclear spectroscopy has been the detection of gamma rays, their energies, and the identity of their parent atomic nuclei. From this, the properties of the formation can be better understood. There have been many advances in technology that have led to the current state of nuclear spectroscopy tools. The most notable has been the ability to detect the presence of a gamma ray. After this came numerous advances in scintillator crystal detector technology, the pulsed-neutron generator, the energy digitization of gamma ray pulses, fast-timing electronics, and powerful computers. These advances have made possible the complex, gamma ray-centric logging tools that we have today that have helped petroleum engineers in the energy industry locate and produce hydrocarbon, kerogen, and natural gas reservoirs for the benefit of each individual in the world. This paper discusses the rich history of these historic developments.


Sign in / Sign up

Export Citation Format

Share Document