Dissolving Microneedle Formulation of Ceftriaxone: Effect of Polymer Concentrations on Characterisation and Ex Vivo Permeation Study

Author(s):  
Hamita Esa Putri ◽  
Rifka Nurul Utami ◽  
Aliyah ◽  
Elly Wahyudin ◽  
Windy Winalda Oktaviani ◽  
...  
2019 ◽  
Vol 4 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Rabinarayan Parhi ◽  
Surya Santhosh Reddy ◽  
Suryakanta Swain

Background: Application of thermoreversible gel can be a solution to the low residence time of the topical dosage forms such as normal gel, ointment and cream on the skin surface. Addition of another polymer and a nanocomposite can improve the poor mechanical strength and fast drug release of poloxamer 407 (POL 407) gel. Therefore, it is essential to add xanthan gum (XG) and graphene oxide (GO, thickness 1-2 nm, lateral dimension 1-5 µm) to POL 407 gel to enhance the mechanical strength and to sustain the drug release from the gel. Methods: Thermal gel of ondansetron hydrochloride (OSH) containing nanocomposite was prepared by adopting cold method. Interaction between drug and polymers was studied using FTIR method, morphological investigation was carried out by optical and scanning electron microscopy method, and rheological study was performed employing rotational rheometer equipped with a cone/plate shear apparatus, gelation temperature by glass bottle method and ex vivo permeation study was performed with cylindrical glass diffusion cell. Skin irritation potential was measured using rat as a model animal. Results: The FTIR spectrum of the selected gel showed that there is shifting of O-H stretching vibration of a hydroxyl group from 3408.72 to 3360.49 cm-1 and appearance of a new band at 1083.01 cm-1. The spectrum of the selected gel also showed the absence of characteristic peaks of GO at 1625.49 cm- 1. This result indicated that there may be an interaction between OSH and GO and hydrogen bonding between XG and POL 407. The gelation temperature was found to be decreased with the increase in GO content from 14.1±1.21°C 13±0.97°C. SEM micrograph demonstrated the uniform dispersion and intercalation of GO sheets in the gel. All the gel formulations showed a pseudo-plastic flow. Ex vivo permeation study (for 24 hr) exhibited highest (6991.425 µg) and lowest (2133.262 µg) amount of drug release, for OG1 and OG5, respectively. This is attributed to an increase in viscosity which led to a decrease in drug permeation across the abdominal skin of rats. The OG1 formulation (without GO) showed the highest flux of 76.66 µg/cm2/h, permeability coefficient (Kp) of 5.111× 10-3 cm/h and enhancement ratio of 3.277 compared to OG5 containing highest amount (9% w/w) of GO. The selected gel was found to be physically stable and there was minimum irritation score. Conclusion: All the above results indicated that thermal gel containing nanocomposite sustained the drug release and can be considered as an alternative to the orally administered tablet of OSH.


2018 ◽  
Vol 16 (2) ◽  
pp. 123-135 ◽  
Author(s):  
Mohsin Qureshi ◽  
Mohd. Aqil ◽  
Syed Sarim Imam ◽  
Abdul Ahad ◽  
Yasmin Sultana

Background: The present work was designed to explore the efficacy of neuroactive drug (risperidone) loaded chitosan lipid nanoparticle (RIS-CH-LNPs) to enhance the bioactivity in schizophrenia via the nasal route. </P><P> Methods: The three-factor and three-level formulation by design approach was used for optimization and their effects were observed on (Y1) size in nm, (Y2) % drug loading, and (Y3) % drug release. The optimized formulation RIS-CH-LNPopt was further evaluated for its surface morphology, ex-vivo permeation study, in-vivo behavior study, and stability study. The developed RIS-CH-LNPs showed nanometric size range with high drug loading and prolonged drug release. Results: The optimized formulation (RIS-CH-LNPopt) has shown the particle size (132.7 nm), drug loading (7.6 %), drug release (80.7 %) and further ex-vivo permeation study showed 2.32 fold enhancement over RIS-SUS(suspension). In-vivo behavior studies showed that RIS-CH-LNPopt is able to show significant greater bioefficacy as compared to RIS-SUS [intranasal (i.n), intravenous (i.v)]. The pharmacokinetic and brain/plasma ratio of developed chitosan nanoparticle was higher at all time-points as compared to RIS-SUS either given by intranasal or intravenous route that proves the direct nose to brain transport pathway of the drug via nasal administration. The developed chitosan nanoparticle increases nose to brain drug delivery as compared to the dispersion of equivalent dose. The findings of this study substantiate the existence of a direct nose-to-brain delivery route for RIS-CH-LNPs.


Author(s):  
Mohammad Irshad Reza ◽  
Divya Goel ◽  
Rahul Kumar Gupta ◽  
Musarrat Hussain Warsi

Objective: The objective of the present work was to formulate and characterize nano dispersive gel (NDG) for topical delivery of water-insoluble antifungal agent ketoconazole in order to enhance its solubility, penetration through the skin and antifungal activity.Methods: Nano dispersion of the drug was first prepared by swollen micelles technique (SMT) using tween 80 and chloroform which is then incorporated into the gel using carbopol 934. Ten formulations of ketoconazole loaded NDG was prepared and characterized for different physicochemical parameters like homogeneity, pH, spreadability, extrudability, practical yield, drug content, in vitro drug release, ex vivo permeation study, and biological parameter antifungal activity.Results: The formulated topical preparation exhibit pH in the range of 6.5 to 7.4, and unveiled excellent homogeneity, spreadability and extrudability. Out of 10 formulations, formulation F4 showed maximum drug content of 95.56±1.13% and practical yield of 97.23±0.51%. The in vitro drug release studies were performed using pH 7.4 phosphate buffer. Formulation F4 showed best in vitro drug release 96.52±0.52% at the end of 24 h of study. Ex vivo permeation study of formulation F4 carried out using franz diffusion cell, also manifested good permeation and flux of drug across the chicken skin. Antifungal activity test of formulation F4 was carried out by the cup plate method using Aspergillus niger strain against marketed ketoconazole unveiled higher antifungal activity than marketed one.Conclusion: The study confirmed formulation F4 to be an optimized and promising formulation for the effective treatment of topical fungal infections with enhanced solubility and penetration through the skin.


1997 ◽  
Vol 44 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Shaul Muchtar ◽  
Muhamad Abdulrazik ◽  
Joseph Frucht-Pery ◽  
Simon Benita

Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582092385
Author(s):  
Tarek A. Ahmed ◽  
Asmaa M. S. Alay ◽  
Solomon Z. Okbazghi ◽  
Nabil A. Alhakamy

Dapoxetine (DPX) is an orally administered drug for the treatment of premature ejaculation (PE). One of the challenges of administering DPX orally as a tablet is its poor bioavailability (ie, 42%) due to extensive first-pass metabolism. Thus, it is vital to develop a new formulation and mode of delivery to achieve the unmet needs of PE treatment. In this study, an optimized DPX polymeric nanoparticle (PNP) was developed and subsequently loaded into a transdermal film. The Box–Behnken design was utilized to optimize 3 formulation factors affecting the particle size and entrapment efficiency (EE) of chitosan (CS)-alginate (ALG) PNPs. A 3-level factorial design was used to study the effect of 2 variables affecting DPX cumulative percent released and percent elongation from transdermal films loaded with DPX-PNPs. Permeation parameters were calculated following ex vivo permeation study through rat skin. Transport of the PNPs across the skin layers was investigated using a fluorescence laser microscope. Results revealed that an optimized PNPs formulation was developed with a particle size 415.94 nm and EE 37.31%. Dapoxetine was successfully entrapped in the polymeric matrix. Chitosan and ALG interacted electrostatically with the studied cross-linking agents to form a polyelectrolyte complex. The ex vivo study illustrated a sustained release profile of DPX with enhanced skin permeation from the film loaded PNPs. Moreover, the PNPs was able to penetrate deeper into skin layers. Therefore, DPX transdermal film developed in this work could be considered as a successful drug delivery with better patient compliance for the treatment of PE.


Sign in / Sign up

Export Citation Format

Share Document