Renoprotective effect of Alpiniae oxyphyllae Fructus on ischemia/reperfusion-induced acute renal failure

2013 ◽  
Vol 36 (8) ◽  
pp. 1004-1012 ◽  
Author(s):  
Eun Ju Kim ◽  
Yun Jung Lee ◽  
You Mee Ahn ◽  
Hyeok Lee ◽  
Dae-Gill Kang ◽  
...  
2003 ◽  
Vol 284 (5) ◽  
pp. F1046-F1055 ◽  
Author(s):  
Kamyar Zahedi ◽  
Zhaohui Wang ◽  
Sharon Barone ◽  
Anne E. Prada ◽  
Caitlin N. Kelly ◽  
...  

Ischemia-reperfusion injury (IRI) is the major cause of acute renal failure in native and allograft kidneys. Identifying the molecules and pathways involved in the pathophysiology of renal IRI will yield valuable new diagnostic and therapeutic information. To identify differentially regulated genes in renal IRI, RNA from rat kidneys subjected to an established renal IRI protocol (bilateral occlusion of renal pedicles for 30 min followed by reperfusion) and time-matched kidneys from sham-operated animals was subjected to suppression subtractive hybridization. The level of spermidine/spermine N 1-acetyltransferase (SSAT) mRNA, an essential enzyme for the catabolism of polyamines, increased in renal IRI. SSAT expression was found throughout normal kidney tubules, as detected by nephron segment RT-PCR. Northern blots demonstrated that the mRNA levels of SSAT are increased by greater than threefold in the renal cortex and by fivefold in the renal medulla at 12 h and returned to baseline at 48 h after ischemia. The increase in SSAT mRNA was paralleled by an increase in SSAT protein levels as determined by Western blot analysis. The concentration of putrescine in the kidney increased by ∼4- and ∼7.5-fold at 12 and 24 h of reperfusion, respectively, consistent with increased functional activity of SSAT. To assess the specificity of SSAT for tubular injury, a model of acute renal failure from Na+depletion (without tubular injury) was studied; SSAT mRNA levels remained unchanged in rats subjected to Na+ depletion. To distinguish SSAT increases from the effects of tubular injury vs. uremic toxins, SSAT was increased in cis-platinum-treated animals before the onset of renal failure. The expression of SSAT mRNA and protein increased by ∼3.5- and >10-fold, respectively, in renal tubule epithelial cells subjected to ATP depletion and metabolic poisoning (an in vitro model of kidney IRI). Our results suggest that SSAT is likely a new marker of tubular cell injury that distinguishes acute prerenal from intrarenal failure.


1990 ◽  
Vol 258 (2) ◽  
pp. F232-F236 ◽  
Author(s):  
M. Joannidis ◽  
G. Gstraunthaler ◽  
W. Pfaller

The conversion rates of xanthine dehydrogenase (XDH) to xanthine oxidase (XO) were compared with the time course of in vivo lipid peroxidation (LPO) in an ischemia-reperfusion model of acute renal failure in the rat. LPO, measured as the renal release of malondialdehyde (MDA), was found to be markedly elevated only during the first 5 min of blood reflow following a 45-min interval of ischemia (arteriovenous MDA difference -277.3 +/- 53.5 vs. 3.7 +/- 5.7 nmol/l in controls, n = 14). After 30 min of reperfusion, arteriovenous MDA differences nearly reached control values (9.7 +/- 31.8 nmol/l, n = 7). In contrast to enhanced LPO, no significant conversion of XDH to XO was found (XO activity in controls: 23 +/- 1% of XO plus XDH activity vs. 26 +/- 3% after 45 min of ischemia, n = 7). Therefore XO-derived superoxide anion radicals cannot be considered causative for LPO in the reperfusion interval of experimental ischemic acute renal failure.


2005 ◽  
Vol 288 (5) ◽  
pp. F953-F963 ◽  
Author(s):  
David P. Basile ◽  
Katherine Fredrich ◽  
Morufu Alausa ◽  
Carlos P. Vio ◽  
Mingyu Liang ◽  
...  

Recovery from ischemic acute renal failure (ARF) involves a well-described regenerative process; however, recovery from ARF also results in a predisposition to a progressive renal disease that is not well understood. This study sought to identify alterations in renal gene expression in postischemic, recovered animals that might play important roles in this progressive disorder. RNA isolated from sham-operated control rats or rats 35 days after recovery from bilateral ischemia-reperfusion (I/R) injury was compared using a cDNA microarray containing ∼2,000 known rat genes. A reference hybridization strategy was utilized to define a 99.9% interval and to identify 16 genes that were persistently altered after recovery from I/R injury (12 were upregulated and 4 were downregulated). Real-time PCR verified the altered expression of six of eight genes that had been positively identified. Several genes that were identified had not previously been evaluated within the context of ARF. S100A4, a specific marker of fibroblasts, was identified in a population of interstitial cells that were present postischemic injury. S100A4-positive cells were also identified in tubular cells at earlier time points postischemia. Genes associated with calcification, including osteopontin and matrix Gla protein, were also enhanced postischemic injury. Several proinflammatory genes were identified, including complement C4, were enhanced in postischemic tissues. Conversely, renal kallikrein expression was specifically reduced in the postischemic kidney. In summary, genes with known inflammatory, remodeling, and vasoactive activities were identified in rat kidneys after recovery from ARF, some of which may play a role in altering long-term renal function after recovery from ARF.


2010 ◽  
Vol 299 (2) ◽  
pp. F453-F464 ◽  
Author(s):  
Katherine J. Kelly ◽  
Barbara Kluve-Beckerman ◽  
Jizhong Zhang ◽  
Jesus H. Dominguez

Serum amyloid A protein (SAA), a prominent component of the acute-phase response, is strongly expressed in developing and repairing kidneys and promotes tubulogenesis. Accordingly, we reprogrammed relatively undifferentiated NRK52E cells with the mouse SAA1.1 gene and transplanted SAA-positive and -negative cells into rats with acute renal failure. We found that SAA-positive cells accelerated renal recovery in three models of acute renal failure: gentamicin nephrotoxicity, cisplatin-mediated renal injury, and ischemia-reperfusion renal injury. The dramatic improvement of renal failure was demonstrable within 2 days, consistent with an early paracrine effect. However, abundant donor cells were also found integrated in the healing tubular architecture after 7 days. We conclude that infusions of SAA-positive cells promote renal recovery after acute renal failure and offer a potentially powerful and novel therapy of renal failure.


2016 ◽  
Vol 84 ◽  
pp. 861-869 ◽  
Author(s):  
Alaa E. El-Sisi ◽  
Samia S. Sokar ◽  
Sally E. Abu-Risha ◽  
Hanaa A. Ibrahim

Sign in / Sign up

Export Citation Format

Share Document