Fast bidirectional building performance optimization at the early design stage

2018 ◽  
Vol 11 (4) ◽  
pp. 647-661 ◽  
Author(s):  
Ziwei Li ◽  
Hongzhong Chen ◽  
Borong Lin ◽  
Yingxin Zhu
BORDER ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 53-64
Author(s):  
Fenty Ratna Indarti

Due to the ozone layer depletion, global warming and climate change, there is a significant increase to reduce carbon emission. Practitioners and academia undertake studies to promote environmentally friendly built environments. Developed countries have established specific standards to achieve a carbon neutral as their commitment to contribute for a better earth condition. Design phases are considered as the early stage where the environmental approach needs to be applied to predict the building performance as soon as possible to maximise the energy efficiency of the proposed building. Another significant factor affecting the building energy performance is climate. Climate becomes the first parameter to generate building proposals as it is contextual to the site. This study aims to assess the application of environmental approach in designing educational building in temperate climate during the early design stage. The combination of design and simulation during the early design stage, helps to define the best design proposal to adopt passive design that harvest the environment condition as much as possible to deliver comfort into the building.


Author(s):  
Lukman Irshad ◽  
Salman Ahmed ◽  
Onan Demirel ◽  
Irem Y. Tumer

Detection of potential failures and human error and their propagation over time at an early design stage will help prevent system failures and adverse accidents. Hence, there is a need for a failure analysis technique that will assess potential functional/component failures, human errors, and how they propagate to affect the system overall. Prior work has introduced FFIP (Functional Failure Identification and Propagation), which considers both human error and mechanical failures and their propagation at a system level at early design stages. However, it fails to consider the specific human actions (expected or unexpected) that contributed towards the human error. In this paper, we propose a method to expand FFIP to include human action/error propagation during failure analysis so a designer can address the human errors using human factors engineering principals at early design stages. To explore the capabilities of the proposed method, it is applied to a hold-up tank example and the results are coupled with Digital Human Modeling to demonstrate how designers can use these tools to make better design decisions before any design commitments are made.


Sign in / Sign up

Export Citation Format

Share Document