Flash-assisted doping graphene for ultrafast potassium transport

Nano Research ◽  
2022 ◽  
Author(s):  
Yongzhi Zhang ◽  
Xianjue Chen ◽  
Wanglai Cen ◽  
Wenhao Ren ◽  
Haocheng Guo ◽  
...  
Keyword(s):  
1976 ◽  
Vol 230 (1) ◽  
pp. 239-244 ◽  
Author(s):  
JF Boudry ◽  
LC Stoner ◽  
MB Burg

In order to determine the effect of acid lumen pH on renal tubular potassium transport, cortical collecting tubules were dissected from rabbit kidneys and perfused in vitro. When the pH of the perfusate was lowered from 7.4 to 6.8, potassium secretion into the tubule lumen decreased by an average of 47%. The transepithelial voltage increased from a mean value of -32 mV (lumen negative) at pH 7.4 to -51 mV at PH 6.8. Net sodium absorption from the tubule lumen was essentially unchanged (5% mean decrease). Transepithelial voltage and potassium secretion returned to control values when the pH of the perfusate was raised to 7.4. Alterations in pH of the bath had no comparable effect on the transepithelial voltage, whether the bath pH was increased or decreased. We conclude that a decrease in the pH of the tubule fluid of itself inhibits active potassium secretion in this tubule segment, providing an additional explanation for the decrease in potassium excretion found in acidosis. The negative voltage (presumably caused by sodium absorption out of the lumen) is increased under these conditions, possibly because of reduction of a smaller counterbalancing positive voltage caused by potassium secretion into the lumen.


Sign in / Sign up

Export Citation Format

Share Document