sodium potassium
Recently Published Documents


TOTAL DOCUMENTS

3644
(FIVE YEARS 487)

H-INDEX

93
(FIVE YEARS 13)

2024 ◽  
Vol 84 ◽  
Author(s):  
F. Awan ◽  
M. M. Ali ◽  
I. Q. Afridi ◽  
S. Kalsoom ◽  
S. Firyal ◽  
...  

Abstract The present study involves the chemical and bacteriological analysis of water from different sources i.e., bore, wells, bottle, and tap, from Peshawar, Mardan, Swat and Kohat districts of Khyber Pakhtunkhwa (KP) province, Pakistan. From each district, 50 water samples (10 samples from each source), regardless of urban and rural status, were collected from these sources and analysed for sulphates, nitrates, nitrites, chlorides, total soluble solids and coliforms (E. coli). Results indicated that majority of the water sources had unacceptable E. coli count i.e.> 34 CFU/100mL. E. coli positive samples were high in Mardan District, followed by Kohat, Swat and Peshawar district. Besides this, the some water sources were also chemically contaminated by different inorganic fertilizers (nitrates/nitrites of sodium, potassium) but under safe levels whereas agricultural and industrial wastes (chloride and sulphate compounds) were in unsafe range. Among all districts, the water quality was found comparatively more deteriorated in Kohat and Mardan districts than Peshawar and Swat districts. Such chemically and bacteriologically unfit water sources for drinking and can cause human health problems.


2022 ◽  
Vol 8 ◽  
Author(s):  
Mark Rohrscheib ◽  
Ramin Sam ◽  
Dominic S. Raj ◽  
Christos P. Argyropoulos ◽  
Mark L. Unruh ◽  
...  

The key message from the 1958 Edelman study states that combinations of external gains or losses of sodium, potassium and water leading to an increase of the fraction (total body sodium plus total body potassium) over total body water will raise the serum sodium concentration ([Na]S), while external gains or losses leading to a decrease in this fraction will lower [Na]S. A variety of studies have supported this concept and current quantitative methods for correcting dysnatremias, including formulas calculating the volume of saline needed for a change in [Na]S are based on it. Not accounting for external losses of sodium, potassium and water during treatment and faulty values for body water inserted in the formulas predicting the change in [Na]S affect the accuracy of these formulas. Newly described factors potentially affecting the change in [Na]S during treatment of dysnatremias include the following: (a) exchanges during development or correction of dysnatremias between osmotically inactive sodium stored in tissues and osmotically active sodium in solution in body fluids; (b) chemical binding of part of body water to macromolecules which would decrease the amount of body water available for osmotic exchanges; and (c) genetic influences on the determination of sodium concentration in body fluids. The effects of these newer developments on the methods of treatment of dysnatremias are not well-established and will need extensive studying. Currently, monitoring of serum sodium concentration remains a critical step during treatment of dysnatremias.


2022 ◽  
pp. 109980042110654
Author(s):  
María Correa-Rodríguez ◽  
Sara DelOlmo-Romero ◽  
Gabriela Pocovi-Gerardino ◽  
José-Luis Callejas-Rubio ◽  
Raquel Ríos-Fernández ◽  
...  

Purpose: The aim of this study was to investigate the association between dietary sodium, potassium, and sodium:potassium ratio and clinical disease activity parameters, damage accrual, and cardiovascular disease risk factors in a population of patients with systemic lupus erythematous (SLE). Research design and study sample: A cross-sectional study including a total of 280 patients was conducted (90.4% females; mean age 46.9 ± 12.85 years). Data collection: The SLE Disease Activity Index (SLEDAI-2K) and the SDI Damage Index were used to assess disease activity and disease-related damage, respectively. A 24-hour diet recall was used to estimate dietary intake of sodium and potassium. Results: Dietary sodium intake was significantly associated with anti-dsDNA ( β  =  −.005; 95% CI [.002 .008]; p = .001) and complement C4 level ( β  =  −.002; 95% CI [−.003, .000]; p = .039). Dietary potassium intake was also significantly associated with complement C3 level ( β  =  −.004; 95% CI [−.007, −.001]; p = .021). Multiple logistic regression models revealed a positive association between dietary sodium intake and the risk of having hsCRP > 3 ( p = .005) and an inverse association between dietary potassium intake and the risk of having hsCRP > 3 ( p = .004). Conclusions: SLE patients with higher dietary sodium and lower dietary potassium intakes had an increased risk of higher hsCRP. Dietary sodium intake was significantly associated with anti-dsDNA and complement C4 level, while dietary potassium intake was associated with complement C3 level, supporting that dietary sodium and potassium intakes might play a key role in markers related to disease activity in SLE patients.


2022 ◽  
pp. 159-192
Author(s):  
John G. Toffaletti ◽  
Craig R. Rackley

Author(s):  
Fitri Mairizki ◽  
Arief Yandra Putra ◽  
Widya Adiza Putri ◽  
Ferdyansyah

Groundwater plays important role as the main water resource for human needs. The vulnerability of groundwater to contaminants both naturally and by human activities can be not avoided as a trigger for groundwater quality degradation. Hydrogeochemical become important highlights in groundwater studies because groundwater conditions in quality and quantity influenced by the geological formation of rock minerals in aquifer. Naturally, the condition of the research area which consists of peat swamps can also affect the characteristics of groundwater. The aims of this research are to determine groundwater types and groundwater facies in study area with an analytical approach using stiff diagram and piper diagram. The method used was purposive sampling by collecting data from dug wells at the research site. 5 samples from dug wells were used as representatives in the groundwater facies analysis. The groundwater facies analysis was carried out by measuring the concentration of major ions such as Na, K, Ca, Mg, Cl, SO4, and HCO3. The highest groundwater level was in the northern part of study area (7,84 m) while the lowest groundwater level was in the southwest part of study area (2,05 m). The results showed three types of groundwater based on stiff diagram as sodium chloride (NaCl), sodium sulfate (NaSO4) and magnesium sulfate (MgSO4). The lithology conditions that composed the aquifer affected the facies or origin of groundwater. The alluvium layer in the research area which rich in sodium (Na+) minerals with chloride (Cl-) or sulfate (SO42-) anions forms chloride sulfate facies (Cl+SO4) which were located in the middle to the south of the study area and sodium (potassium) chloride (sulfate) facies (Na(K)Cl(SO4)) which were distributed in the northern part of study area.


2021 ◽  
pp. 2659-2679
Author(s):  
Natalya U. Fedosova ◽  
Michael Habeck ◽  
Poul Nissen

2021 ◽  
Vol 8 ◽  
Author(s):  
Michelle M. Monasky ◽  
Emanuele Micaglio ◽  
Sara D'Imperio ◽  
Carlo Pappone

Ajmaline is an anti-arrhythmic drug that is used to unmask the type-1 Brugada syndrome (BrS) electrocardiogram pattern to diagnose the syndrome. Thus, the disease is defined at its core as a particular response to this or other drugs. Ajmaline is usually described as a sodium-channel blocker, and most research into the mechanism of BrS has centered around this idea that the sodium channel is somehow impaired in BrS, and thus the genetics research has placed much emphasis on sodium channel gene mutations, especially the gene SCN5A, to the point that it has even been suggested that only the SCN5A gene should be screened in BrS patients. However, pathogenic rare variants in SCN5A are identified in only 20–30% of cases, and recent data indicates that SCN5A variants are actually, in many cases, prognostic rather than diagnostic, resulting in a more severe phenotype. Furthermore, the misconception by some that ajmaline only influences the sodium current is flawed, in that ajmaline actually acts additionally on potassium and calcium currents, as well as mitochondria and metabolic pathways. Clinical studies have implicated several candidate genes in BrS, encoding not only for sodium, potassium, and calcium channel proteins, but also for signaling-related, scaffolding-related, sarcomeric, and mitochondrial proteins. Thus, these proteins, as well as any proteins that act upon them, could prove absolutely relevant in the mechanism of BrS.


Sign in / Sign up

Export Citation Format

Share Document