distal nephron
Recently Published Documents


TOTAL DOCUMENTS

533
(FIVE YEARS 50)

H-INDEX

52
(FIVE YEARS 4)

2022 ◽  
pp. ASN.2021030392
Author(s):  
Wouter van Megen ◽  
Megan Beggs ◽  
Sung-Wan An ◽  
Patrícia Ferreira ◽  
Justin Lee ◽  
...  

Background Treatment with the aminoglycoside antibiotic gentamicin can be associated with severe adverse effects, including renal calcium wasting. The underlying mechanism is unknown but it has been proposed to involve activation of the Ca2+-sensing receptor (CaSR) in the thick ascending limb, which would increase expression of claudin-14 (CLDN14) and limit Ca2+ reabsorption. However, no direct evidence for this hypothesis has been presented. Methods We studied the effect of gentamicin in vivo using mouse models with impaired Ca2+ reabsorption in the proximal tubule and the thick ascending limb. We used a Cldn14 promoter luciferase-reporter assay to study CaSR activation and investigated the effect of gentamicin on activity of the distal nephron Ca2+ channel transient potential receptor vanilloid 5 (TPRV5), as determined by patch-clamp in HEK293 cells. Results Gentamicin increased urinary Ca2+ excretion in wild-type mice following acute and chronic administration. This calciuretic effect was unaltered in mice with genetic CaSR overactivation and was present in furosemide-treated animals, whereas the calciuretic effect in Cldn14-/-mice and mice with impaired proximal tubular Ca2+ reabsorption (claudin-2 [CLDN2]-deficient Cldn2-/- mice) was equivalent to that of wild-type mice. In vitro, gentamicin failed to activate the CaSR. In contrast, patch-clamp analysis revealed that gentamicin strongly inhibited rabbit and human TRPV5 activity and that chronic gentamicin administration downregulated distal nephron Ca2+ transporters. Conclusions Gentamicin does not cause hypercalciuria via activation of the CaSR-CLDN14 pathway or by interfering with proximal tubular CLDN2-dependent Ca2+ reabsorption. Instead, gentamicin blocks distal Ca2+ reabsorption by direct inhibition of the Ca2+ channel TRPV5. These findings offer new insights into calcium wasting in patients treated with gentamicin.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ava M. Zapf ◽  
Paul R. Grimm ◽  
Lama Al-Qusairi ◽  
Eric Delpire ◽  
Paul A. Welling

Aberrant activation of with-no-lysine kinase (WNK)-STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) kinase signaling in the distal convoluted tubule (DCT) causes unbridled activation of the thiazide-sensitive sodium chloride cotransporter (NCC), leading to familial hyperkalemic hypertension (FHHt) in humans. Studies in FHHt mice engineered to constitutively activate SPAK specifically in the DCT (CA-SPAK mice) revealed maladaptive remodeling of the aldosterone sensitive distal nephron (ASDN), characterized by decrease in the potassium excretory channel, renal outer medullary potassium (ROMK), and epithelial sodium channel (ENaC), that contributes to the hyperkalemia. The mechanisms by which NCC activation in DCT promotes remodeling of connecting tubule (CNT) are unknown, but paracrine communication and reduced salt delivery to the ASDN have been suspected. Here, we explore the involvement of prostaglandin E2 (PGE2). We found that PGE2 and the terminal PGE2 synthase, mPGES1, are increased in kidney cortex of CA-SPAK mice, compared to control or SPAK KO mice. Hydrochlorothiazide (HCTZ) reduced PGE2 to control levels, indicating increased PGE2 synthesis is dependent on increased NCC activity. Immunolocalization studies revealed mPGES1 is selectively increased in the CNT of CA-SPAK mice, implicating low salt-delivery to ASDN as the trigger. Salt titration studies in an in vitro ASDN cell model, mouse CCD cell (mCCD-CL1), confirmed PGE2 synthesis is activated by low salt, and revealed that response is paralleled by induction of mPGES1 gene expression. Finally, inhibition of the PGE2 receptor, EP1, in CA-SPAK mice partially restored potassium homeostasis as it partially rescued ROMK protein abundance, but not ENaC. Together, these data indicate low sodium delivery to the ASDN activates PGE2 synthesis and this inhibits ROMK through autocrine activation of the EP1 receptor. These findings provide new insights into the mechanism by which activation of sodium transport in the DCT causes remodeling of the ASDN.


Author(s):  
Dan-Dan Zhang ◽  
Jun-Ya Zheng ◽  
Xin-Peng Duan ◽  
Dao-Hong Lin ◽  
Wenhui Wang

We used whole-cell-recording to examine renal-outer-medullary-K+ channel (ROMK or Kir1.1) and epithelial-Na+-Channel (ENaC) in late-distal-convoluted-tubule (DCT2)/initial-connecting-tubule (iCNT) and in the cortical-collecting-duct (CCD) of kidney-tubule-specific Nedd4-2 knockout mice (Ks-Nedd4-2-KO) and floxed-Nedd4l mice (control). TPNQ-sensitive K+ currents (ROMK) were smaller in both DCT2/iCNT and CCD of Ks-Nedd4-2-KO mice on normal diet than control mice. Neither high-dietary-salt-intake (HS) nor low-dietary-salt-intake (LS) had a significant effect on ROMK activity in the DCT2/iCNT and CCD of control and Ks-Nedd4-2-KO mice. In contrast, high-dietary-K+-intake (HK) increased while low-dietary-K+-intake (LK) decreased TPNQ-sensitive K+ currents in floxed-Nedd4l mice. However, effects of dietary-K+ intake on ROMK channel activity were absent in Ks-Nedd4-2-KO mice since neither HK nor LK significantly affected TPNQ-sensitive K+ currents in DCT2/iCNT and CCD. Moreover. TPNQ-sensitive K+ currents in DCT2/iCNT and the CCD of Ks-Nedd4-2-KO mice on HK were similar to the control mice on LK. Amiloride-sensitive Na+ currents in DCT2/iCNT and CCD were significantly higher in Ks-Nedd4-2-KO mice than floxed-Nedd4l mice on normal-K+-diet. HK increased ENaC activity of DCT2/iCNT only in the control mice but HK stimulated ENaC of the CCD in both control and Ks-Nedd4-2-KO mice. Moreover, HK-induced increase in amiloride-sensitive Na+-currents was larger in Ks-Nedd4-2-KO mice than the control mice. Deletion of Nedd4-2 increased WNK1 expression and abolished the HK-induced inhibition of WNK1. We conclude that deletion of Nedd4-2 increases ENaC activity but decreases ROMK activity in aldosterone-sensitive distal nephron (ASDN) and that HK fails to stimulate ROMK but robustly increases ENaC activity in the CCD of Nedd4-2-deficeint mice.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tetsuhiro Yoshino ◽  
Saori Shimada ◽  
Masato Homma ◽  
Toshiaki Makino ◽  
Masaru Mimura ◽  
...  

Licorice, the dried root or stolon of Glycyrrhiza glabra or G. ularensis, is commonly used worldwide as a food sweetener or crude drug. Its major ingredient is glycyrrhizin. Hypokalemia or pseudoaldosteronism (PsA) is one of the most frequent side effects of licorice intake. Glycyrrhizin metabolites inhibit type 2 11β-hydroxysteroid dehydrogenase (11βHSD2), which decomposes cortisol into inactive cortisone in the distal nephron, thereby inducing mineralocorticoid receptor activity. Among the several reported glycyrrhizin-metabolites, 18β-glycyrrhetyl-3-O-sulfate is the major compound found in humans after licorice consumption, followed by glycyrrhetinic acid. These metabolites are highly bound to albumin in blood circulation and are predominantly excreted into bile via multidrug resistance-associated protein 2 (Mrp2). High dosage and long-term use of licorice are constitutional risk factors for PsA. Orally administered glycyrrhizin is effectively hydrolyzed to glycyrrhetinic acid by the intestinal bacteria in constipated patients, which enhances the bioavailability of glycyrrhizin metabolites. Under hypoalbuminemic conditions, the unbound metabolite fractions can reach 11βHSD2 at the distal nephron. Hyper direct-bilirubin could be a surrogate marker of Mrp2 dysfunction, which results in metabolite accumulation. Older age is associated with reduced 11βHSD2 function, and several concomitant medications, such as diuretics, have been reported to affect the phenotype. This review summarizes several factors related to licorice-induced PsA, including daily dosage, long-term use, constipation, hypoalbuminemia, hyper direct-bilirubin, older age, and concomitant medications.


2021 ◽  
Vol 2021 ◽  
pp. 1-3
Author(s):  
Carlos E. Duran ◽  
Mayra Estacio ◽  
Fredy Lozano ◽  
Esteban Echeverri ◽  
Maria Juliana Riascos ◽  
...  

Case Presentation. Distal renal tubular acidosis (dRTA) is characterized by impaired hydrogen ion secretion in the distal nephron resulting either from decreased net activity of the proton pump or from increased luminal membrane hydrogen ion permeability. Typical complications of dRTA include severe hypokalemia, normal anion gap metabolic acidosis, nephrolithiasis, and nephrocalcinosis. The patient is a 25-year-old woman in immediate puerperium with hypokalemia leading to paralysis, and the laboratory findings in this patients were concerning for dRTA. It is rare to encounter this entity during pregnancy, and the impact of this pathology is unknown.


Author(s):  
Shuhua Xu ◽  
Jing Li ◽  
Lei Yang ◽  
Claire J. Wang ◽  
Tommy Liu ◽  
...  

AbstractWe compared the regulation of the NaCl cotransporter (NCC) in adaptation to a low-K (LK) diet in male and female mice. We measured hydrochlorothiazide (HCTZ)-induced changes in urine volume (UV), glomerular filtration rate (GFR), absolute (ENa, EK), and fractional (FENa, FEK) excretion in male and female mice on control-K (CK, 1% KCl) and LK (0.1% KCl) diets for 7 days. With CK, NCC-dependent ENa and FENa were larger in females than males as observed previously. However, with LK, HCTZ-induced ENa and FENa increased in males but not in females, abolishing the sex differences in NCC function as observed in CK group. Despite large diuretic and natriuretic responses to HCTZ, EK was only slightly increased in response to the drug when animals were on LK. This suggests that the K-secretory apparatus in the distal nephron is strongly suppressed under these conditions. We also examined LK-induced changes in Na transport protein expression by Western blotting. Under CK conditions females expressed more NCC protein, as previously reported. LK doubled both total (tNCC) and phosphorylated NCC (pNCC) abundance in males but had more modest effects in females. The larger effect in males abolished the sex-dependence of NCC expression, consistent with the measurements of function by renal clearance. LK intake did not change NHE3, NHE2, or NKCC2 expression, but reduced the amount of the cleaved (presumably active) form of γENaC. LK reduced plasma K to lower levels in females than males. These results indicated that males had a stronger NCC-mediated adaptation to LK intake than females.


Author(s):  
Viatcheslav Nesterov ◽  
Marko Bertog ◽  
Jérémie Canonica ◽  
Edith Hummler ◽  
Richard Coleman ◽  
...  

The epithelial sodium channel (ENaC) constitutes the rate-limiting step for sodium absorption in the aldosterone-sensitive distal nephron (ASDN) comprising the late distal convoluted tubule (DCT2), the connecting tubule (CNT) and the collecting duct. Previously, we demonstrated that ENaC activity in the DCT2/CNT transition zone is constitutively high and independent of aldosterone, in contrast to its aldosterone dependence in the late CNT and initial cortical collecting duct (CNT/CCD). The mineralocorticoid receptor (MR) is expressed in the entire ASDN. Its activation by glucocorticoids is prevented through 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) abundantly expressed in the late but probably not the early part of ASDN. We hypothesized that ENaC function in the early part of the ASDN is aldosterone-independent but may depend on MR activated by glucocorticoids due to low 11β-HSD2 abundance. To test this hypothesis, we used doxycycline-inducible nephron-specific MR-deficient mice (MR KO). Whole-cell ENaC currents were investigated in isolated nephron fragments from DCT2/CNT or CNT/CCD transition zones using the patch-clamp technique. ENaC activity was detectable in CNT/CCD of control mice but absent or barely detectable in the majority of CNT/CCD preparations from MR KO mice. Importantly, ENaC currents in DCT2/CNT were greatly reduced in MR KO mice compared to ENaC currents in DCT2/CNT of control mice. Immunofluorescence for 11β-HSD2 was abundant in CCD, less prominent in CNT and very low in DCT2. We conclude that MR is critically important for maintaining aldosterone-independent ENaC activity in DCT2/CNT. Aldosterone-independent MR activation is probably mediated by glucocorticoids due to low expression of 11β-HSD2.


2021 ◽  
Vol 153 (8) ◽  
Author(s):  
Lei Yang ◽  
Yuanyuan Xu ◽  
Diego Gravotta ◽  
Gustavo Frindt ◽  
Alan M. Weinstein ◽  
...  

We measured the activities of epithelial Na channels (ENaC) and ROMK channels in the distal nephron of the mouse kidney and assessed their role in the process of K+ secretion under different physiological conditions. Under basal dietary conditions (0.5% K), ENaC activity, measured as amiloride-sensitive currents, was high in cells at the distal end of the distal convoluted tubule (DCT) and proximal end of the connecting tubule (CNT), a region we call the early CNT (CNTe). In more distal parts of the CNT (aldosterone-sensitive portion [CNTas]), these currents were minimal. This functional difference correlated with alterations in the intracellular location of ENaC, which was at or near the apical membrane in CNTe and more cytoplasmic in the CNTas. ROMK activity, measured as TPNQ-sensitive currents, was substantial in both segments. A mathematical model of the rat nephron suggested that K+ secretion by the CNTe predicted from these currents provides much of the urinary K+ required for K balance on this diet. In animals fed a K-deficient diet (0.1% K), both ENaC and ROMK currents in the CNTe decreased by ∼50%, predicting a 50% decline in K+ secretion. Enhanced reabsorption by a separate mechanism is required to avoid excessive urinary K+ losses. In animals fed a diet supplemented with 3% K, ENaC currents increased modestly in the CNTe but strongly in the CNTas, while ROMK currents tripled in both segments. The enhanced secretion of K+ by the CNTe and the recruitment of secretion by the CNTas account for the additional transport required for K balance. Therefore, adaptation to increased K+ intake involves the extension of robust K+ secretion to more distal parts of the nephron.


2021 ◽  
Author(s):  
Katherine Xu ◽  
Ning Shang ◽  
Abraham Levitman ◽  
Alexa Corker ◽  
Satoru Kudose ◽  
...  

Background: Kidney injury is common in COVID-19 infection, but serum creatinine (SCr) is not a sensitive or specific marker of kidney injury. We hypothesized that molecular markers of tubular injury could diagnose COVID-19 associated kidney damage and predict its clinical course. Methods: This is a prospective cohort study of 444 consecutive COVID-19 patients (43.9% females, 20.5% African American, 54.1% Latinx) in Columbia University's Emergency Department at the peak of the New York pandemic (March-April 2020). Urine and blood were collected simultaneously at admission (median time of day 0, IQR 0-2 days) and within 1 day of a positive SARS-CoV-2 test in 70% of patients. Biomarker assays were blinded to clinical data. Results: Urinary NGAL (uNGAL) was strongly associated with AKI diagnosis (267±301 vs. 96±139 ng/mL, P=1.6x10-10). uNGAL >150ng/mL had 80% specificity and 75% sensitivity to diagnose AKIN stage 2 or higher. uNGAL quantitatively predicted the duration of AKI and outcomes, including death, dialysis, shock, and longer hospital stay. The risk of death increased 73% per standard deviation of uNGAL [OR (95%CI): 1.73 (1.29-2.33), P=2.8x10-4] and was independent of baseline SCr, co-morbidities, and proteinuria [adjusted OR (95%CI): 1.51 (1.10-2.11), P=1.2x10-2]. Proteinuria and uKIM-1 also indicated tubular injury, but were not diagnostic of AKI. Typically, distal nephron segments transcribe NGAL, but in COVID-19 biopsies with widespread acute tubular injury (ATI), NGAL expression overlapped KIM-1 in proximal tubules. Conclusion: uNGAL predicted the diagnosis, duration, and severity of AKI and ATI, as well as hospital stay, dialysis, shock, and death in patients with acute COVID-19.


Sign in / Sign up

Export Citation Format

Share Document