Benchmark Study of Finite Element Models for Simulating the Thermostamping of Woven-Fabric Reinforced Composites

2010 ◽  
Vol 3 (S1) ◽  
pp. 683-686 ◽  
Author(s):  
J. Sargent ◽  
J. Chen ◽  
J. Sherwood ◽  
J. Cao ◽  
P. Boisse ◽  
...  
2002 ◽  
Vol 39 (04) ◽  
pp. 223-231
Author(s):  
J. C. Roberts ◽  
M. P. Boyle ◽  
P. D. Wienhold ◽  
E. E. Ward

Rectangular orthotropic glass fiber reinforced plastic sandwich panels were tested under uniform out-of-plane pressure and the strains and deflections were compared with those from finite-element models of the panels. The panels, with 0.32 cm (0.125 in.) face sheets and a 1.27 cm (0.5 in.)core of either balsa or linear polyvinylchloride foam, were tested in two sizes: 183 × 92 cm (72 × 36 in.) and121 × 92 cm (48 × 36 in.). The sandwich panels were fabricated using the vacuum-assisted resin transfer molding technique. The two short edges of the sandwich panels were clamped, while the two long edges were simply supported. Uniform external pressure was applied using two large water inflatable bladders in series. The deflection and strains were measured using dial gages and strain gages placed at quarter and half points on the surface of the panels. Measurements were made up to a maximum out-of-plane pressure of 0.1 MPa (15psi). A total of six balsa core and six foam core panels were tested. Finite-element models were constructed for the 183-cm-long panel and the121-cm-long panel. Correlation between numerical and experimental strains to deflect the sandwich panel was much better on the top (tensile) side of the panels than on the bottom (compressive)side of the panels, regardless of panel aspect ratio or core material. All sandwich panels exhibited the same compressive strain reversal behavior on the compressive side of the panel. This phenomenon was thought to be due to nonlinearly induced micro-buckling under the strain gages, buckling of the woven fabric, or micro-cracking within the resin.


2011 ◽  
Vol 189-193 ◽  
pp. 2177-2180 ◽  
Author(s):  
Huai Wen Wang ◽  
Hong Wei Ji ◽  
Wen Quan Shao ◽  
Hui Miao

A series of numerical meso-mechanical models for different kinds of particle (include spherical, cylindrical and discal) reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. In these models, an effective interface concept is adopted. Finite element models with prescribed and random parameters are automatically generated in ABAQUS PDE (Python Development Environment). In the simulative investigations, it is observed that the degree of particle clustering and particle’s shape have strong effects on the elastic mechanical properties of composites.


2019 ◽  
Vol 50 (3) ◽  
pp. 293-311
Author(s):  
Leilei Song ◽  
Yufen Zhao ◽  
Li Chen ◽  
Yingdan Zhu ◽  
Jialu Li

In this study, the three-dimensional finite element models of carbon fiber needled felt reinforced composites were built by using the embedded element technique and the virtual yarn method. Three sizes of samples for carbon fiber needled felt reinforced composites were designed and prepared. The tensile properties were investigated by experiments and theoretical methods, and the influences of sample size on tensile modulus were discussed. The results showed that, the longitudinal tensile moduli of carbon fiber needled felt reinforced composites decreased with the increase of sample size. Compared with the rule of mixtures and the inclusion theory, the longitudinal tensile moduli obtained by finite element method were closer to the experimental values. In addition, the transverse tensile moduli obtained by finite element method were greater than that obtained by the rule of mixtures and the inclusion theory. That was due to the orientation of some fibers had a proportion along the thickness. It was concluded that, these three-dimensional finite element models can be used to investigate the elastic properties of carbon fiber needled felt reinforced composites with different sizes.


2006 ◽  
Vol 306-308 ◽  
pp. 489-494 ◽  
Author(s):  
Leon Mishnaevsky

3D FE (finite element) simulations of the deformation and damage evolution of particle reinforced composites are carried out for different microstructures of the composites. Several new methods and programs for the automatic reconstruction of 3D microstructures of composites on the basis of the geometrical description of microstructures as well as on the basis of the voxel array data have been developed and tested. Different methods of reconstruction and generation of finite element models of 3D microstructures of composite materials (geometry-based and voxel array based) are discussed and compared. It was shown that FE analyses of the elasto-plastic deformation and damage of composite materials using the microstructural models of materials generated with these methods yield very close results. Numerical testing of composites with random, regular, clustered and gradient arrangements of spherical particles is carried out. The fraction of failed particles and the tensile stress-strain curves were determined numerically for each of the microstructures. It was found that the rate of damage growth as well as the critical applied strain, at which the damage growth in particles begins, depend on the particle arrangement, and increase in the following order: gradient < random < regular < clustered microstructure.


Sign in / Sign up

Export Citation Format

Share Document