Geometric Quantization of the 1 : 1 Oscillator

2020 ◽  
Vol 19 (3) ◽  
Author(s):  
Richard Cushman ◽  
Jędrzej Śniatycki
2017 ◽  
Vol 29 (05) ◽  
pp. 1750015 ◽  
Author(s):  
Samuel Monnier

We construct invertible field theories generalizing abelian prequantum spin Chern–Simons theory to manifolds of dimension [Formula: see text] endowed with a Wu structure of degree [Formula: see text]. After analyzing the anomalies of a certain discrete symmetry, we gauge it, producing topological field theories whose path integral reduces to a finite sum, akin to Dijkgraaf–Witten theories. We take a general point of view where the Chern–Simons gauge group and its couplings are encoded in a local system of integral lattices. The Lagrangian of these theories has to be interpreted as a class in a generalized cohomology theory in order to obtain a gauge invariant action. We develop a computationally friendly cochain model for this generalized cohomology and use it in a detailed study of the properties of the Wu Chern–Simons action. In the 3-dimensional spin case, the latter provides a definition of the “fermionic correction” introduced recently in the literature on fermionic symmetry protected topological phases. In order to construct the state space of the gauged theories, we develop an analogue of geometric quantization for finite abelian groups endowed with a skew-symmetric pairing. The physical motivation for this work comes from the fact that in the [Formula: see text] case, the gauged 7-dimensional topological field theories constructed here are essentially the anomaly field theories of the 6-dimensional conformal field theories with [Formula: see text] supersymmetry, as will be discussed elsewhere.


1988 ◽  
Vol 16 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Giuseppe Gaeta ◽  
Mauro Spera

1986 ◽  
Vol 27 (5) ◽  
pp. 1319-1330 ◽  
Author(s):  
Abhay Ashtekar ◽  
Matthew Stillerman

Sign in / Sign up

Export Citation Format

Share Document