topological field
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 41)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Tzu-Chen Huang ◽  
Ying-Hsuan Lin ◽  
Sahand Seifnashri

Abstract We construct the defining data of two-dimensional topological field theories (TFTs) enriched by non-invertible symmetries/topological defect lines. Simple formulae for the three-point functions and the lasso two-point functions are derived, and crossing symmetry is proven. The key ingredients are open-to-closed maps and a boundary crossing relation, by which we show that a diagonal basis exists in the defect Hilbert spaces. We then introduce regular TFTs, provide their explicit constructions for the Fibonacci, Ising and Haagerup ℋ3 fusion categories, and match our formulae with previous bootstrap results. We end by explaining how non-regular TFTs are obtained from regular TFTs via generalized gauging.


Author(s):  
Mohammadreza Noormandipour ◽  
Youran Sun ◽  
Babak Haghighat

Abstract In this work, the capability of restricted Boltzmann machines (RBMs) to find solutions for the Kitaev honeycomb model with periodic boundary conditions is investigated. The measured groundstate (GS) energy of the system is compared and, for small lattice sizes (e.g. 3×3 with 18 spinors), shown to agree with the analytically derived value of the energy up to a deviation of 0.09 %. Moreover, the wave-functions we find have 99.89 % overlap with the exact ground state wave-functions. Furthermore, the possibility of realizing anyons in the RBM is discussed and an algorithm is given to build these anyonic excitations and braid them for possible future applications in quantum computation. Using the correspondence between topological field theories in (2+1)d and 2d CFTs, we propose an identification between our RBM states with the Moore-Read state and conformal blocks of the 2 d Ising model.


2021 ◽  
Vol 136 (10) ◽  
Author(s):  
Francesco Bajardi ◽  
Lucia Altucci ◽  
Rosaria Benedetti ◽  
Salvatore Capozziello ◽  
Maria Rosaria Del Sorbo ◽  
...  

AbstractWe test the validity of a possible schematization of DNA structure and dynamics based on the Chern–Simons theory, that is a topological field theory mostly considered in the context of effective gravity theories. By means of the expectation value of the Wilson Loop, derived from this analogue gravity approach, we find the point-like curvature of genomic strings in KRAS human gene and COVID-19 sequences, correlating this curvature with the genetic mutations. The point-like curvature profile, obtained by means of the Chern–Simons currents, can be used to infer the position of the given mutations within the genetic string. Generally, mutations take place in the highest Chern–Simons current gradient locations and subsequent mutated sequences appear to have a smoother curvature than the initial ones, in agreement with a free energy minimization argument.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Athanasios Chatzistavrakidis

Abstract We construct a class of topological field theories with Wess-Zumino term in spacetime dimensions ≥ 2 whose target space has a geometrical structure that suitably generalizes Poisson or twisted Poisson manifolds. Assuming a field content comprising a set of scalar fields accompanied by gauge fields of degree (1, p − 1, p) we determine a generic Wess-Zumino topological field theory in p + 1 dimensions with background data consisting of a Poisson 2-vector, a (p + 1)-vector R and a (p + 2)-form H satisfying a specific geometrical condition that defines a H-twisted R-Poisson structure of order p + 1. For this class of theories we demonstrate how a target space covariant formulation can be found by means of an auxiliary connection without torsion. Furthermore, we study admissible deformations of the generic class in special spacetime dimensions and find that they exist in dimensions 2, 3 and 4. The two-dimensional deformed field theory includes the twisted Poisson sigma model, whereas in three dimensions we find a more general structure that we call bi-twisted R-Poisson. This extends the twisted R-Poisson structure of order 3 by a non-closed 3-form and gives rise to a topological field theory whose covariant formulation requires a connection with torsion and includes a twisted Poisson sigma model in three dimensions as a special case. The relation of the corresponding structures to differential graded Q-manifolds based on the degree shifted cotangent bundle T*[p]T*[1]M is discussed, as well as the obstruction to them being QP-manifolds due to the Wess-Zumino term.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Faílde ◽  
Daniel Baldomir

AbstractTopological edge states are predicted to be responsible for the high efficient thermoelectric response of topological insulators, currently the best thermoelectric materials. However, to explain their figure of merit the coexistence of topological electrons, entropy and phonons can not be considered independently. In a background that puts together electrodynamics and topology, through an expression for the topological intrinsic field, we treat relativistic phonons within the topological surface showing their ability to modulate the Berry curvature of the bands and then playing a fundamental role in the thermoelectric effect. Finally, we show how the topological insulators under such relativistic thermal excitations keep time reversal symmetry allowing the observation of high figures of merit at high temperatures. The emergence of this new intrinsic topological field and other constraints are suitable to have experimental consequences opening new possibilities of improving the efficiency of this topological effect for their based technology.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1205
Author(s):  
Francesco Bascone ◽  
Franco Pezzella ◽  
Patrizia Vitale

The geometric properties of sigma models with target space a Jacobi manifold are investigated. In their basic formulation, these are topological field theories—recently introduced by the authors—which share and generalise relevant features of Poisson sigma models, such as gauge invariance under diffeomorphisms and finite dimension of the reduced phase space. After reviewing the main novelties and peculiarities of these models, we perform a detailed analysis of constraints and ensuing gauge symmetries in the Hamiltonian approach. Contact manifolds as well as locally conformal symplectic manifolds are discussed, as main instances of Jacobi manifolds.


2021 ◽  
Author(s):  
Francesco Bajardi ◽  
Lucia Altucci ◽  
Rosaria Benedetti ◽  
Salvatore Capozziello ◽  
Maria Rosaria Del Sorbo ◽  
...  

We test the validity of a possible schematization of DNA structure and dynamics based on the Chern-Simons theory, that is a topological field theory mostly considered in the context of effective gravity theories. By means of the expectation value of the Wilson Loop, derived from this analogue gravity approach, we find the point-like curvature of genomic strings in KRAS human gene and COVID-19 sequences, correlating this curvature with the genetic mutations. The point-like curvature profile, obtained by means of the Chern-Simons currents, can be used to infer the position of the given mutations within the genetic string. Generally, mutations take place in the highest Chern-Simons current gradient locations and subsequent mutated sequences appear to have a smoother curvature than the initial ones, in agreement with a free energy minimization argument.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Ward Vleeshouwers ◽  
Vladimir Gritsev

Random matrix models provide a phenomenological description of a vast variety of physical phenomena. Prominent examples include the eigenvalue statistics of quantum (chaotic) systems, which are characterized by the spectral form factor (SFF). Here, we calculate the SFF of unitary matrix ensembles of infinite order with the weight function satisfying the assumptions of Szeg"{o}’s limit theorem. We then consider a parameter-dependent critical ensemble which has intermediate statistics characteristic of ergodic-to-nonergodic transitions such as the Anderson localization transition. This same ensemble is the matrix model of U(N)U(N) Chern-Simons theory on S^3S3, and the SFF of this ensemble is proportional to the HOMFLY invariant of (2n,2)(2n,2)-torus links with one component in the fundamental and one in the antifundamental representation. This is one example of a large class of ensembles with intermediate statistics arising from topological field and string theories. Indeed, the absence of a local order parameter suggests that it is natural to characterize ergodic-to-nonergodic transitions using topological tools, such as we have done here.


Sign in / Sign up

Export Citation Format

Share Document