Optimal production planning in a hybrid manufacturing and recovering system based on the internet of things with closed loop supply chains

2015 ◽  
Vol 16 (3) ◽  
pp. 543-577 ◽  
Author(s):  
Chang Fang ◽  
Xinbao Liu ◽  
Jun Pei ◽  
Wenjuan Fan ◽  
Panos M. Pardalos
Author(s):  
Christos I. Papanagnou

AbstractClosed-loop supply chains are complex systems as they involve the seamless backward and forward flow of products and information. With the advent of e-commerce and online shopping, there has been a growing interest in product returns and the associated impact on inventory variance and the bullwhip effect. In this paper, a novel four-echelon closed-loop supply chain model is presented, where base-stock replenishment policies are modelled by means of a proportional controller. A stochastic state-space model is implemented, initially to capture the supply chain dynamics while the model is analysed under stationarity conditions with the aid of a covariance matrix. This allows the bullwhip effect to be expressed as a function of replenishment policies and product return rates. Next, an optimisation method is introduced to study the impact of the Internet of Things on inventory variance and the bullwhip effect. The results show that the Internet of Things can reduce costs associated with inventory fluctuations and eliminate the bullwhip effect in closed-loop supply chains.


2012 ◽  
pp. 313-342
Author(s):  
Roberto Poles

In the past, many companies were concerned with managing activities primarily along the traditional supply chain to optimize operational processes and thereby economic benefits, without considering new economic or environmental opportunities in relation to the reverse supply chain and the use of used or reclaimed products. In contrast, companies are now showing increased interest in reverse logistics and closed loop supply chains (CLSCs) and their economic benefits and environmental impacts. In this chapter, our focus is the study of remanufacturing activity, which is one of the main recovery methods applied to closed loop supply chains. Specifically, the authors investigate and evaluate strategies for effective management of inventory control and production planning of a remanufacturing system. To pursue this objective, they model a production and inventory system for remanufacturing using the System Dynamics (SD) simulation modeling approach. The authors primary interest is in the returns process of such a system. Case studies will be referred to in this chapter to support some of the findings and to further validate the developed model.


Sign in / Sign up

Export Citation Format

Share Document