Research and application of a comprehensive forecasting system for tunnels in water-bearing fault fracture zones: a case study

2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Chang-fu Huang ◽  
Shuai-long Zhang ◽  
Shun-chuan Wu ◽  
Yong-tao Gao
2018 ◽  
Vol 3 (2) ◽  
pp. 667-680 ◽  
Author(s):  
Jennie Molinder ◽  
Heiner Körnich ◽  
Esbjörn Olsson ◽  
Hans Bergström ◽  
Anna Sjöblom

Abstract. The problem of icing on wind turbines in cold climates is addressed using probabilistic forecasting to improve next-day forecasts of icing and related production losses. A case study of probabilistic forecasts was generated for a 2-week period. Uncertainties in initial and boundary conditions are represented with an ensemble forecasting system, while uncertainties in the spatial representation are included with a neighbourhood method. Using probabilistic forecasting instead of one single forecast was shown to improve the forecast skill of the ice-related production loss forecasts and hence the icing forecasts. The spread of the multiple forecasts can be used as an estimate of the forecast uncertainty and of the likelihood for icing and severe production losses. Best results, both in terms of forecast skill and forecasted uncertainty, were achieved using both the ensemble forecast and the neighbourhood method combined. This demonstrates that the application of probabilistic forecasting for wind power in cold climates can be valuable when planning next-day energy production, in the usage of de-icing systems and for site safety.


2017 ◽  
Author(s):  
Jennie P. Söderman ◽  
Heiner Körnich ◽  
Esbjörn Olsson ◽  
Hans Bergström ◽  
Anna Sjöblom

Abstract. The problem of icing on wind turbines in cold climates is addressed using probabilistic forecasting to improve next- day forecasts of icing and related production losses. A case study of probabilistic forecasts was generated for a two- week period. Uncertainties in initial and boundary conditions are represented with an ensemble forecasting system, while uncertainties in the spatial representation are included with a neighbourhood method. Using probabilistic forecasting instead of one single forecast was shown to improve the forecast skill of the ice-related production loss forecasts and hence the icing forecasts. The spread of the multiple forecasts can be used as an estimate of the forecast uncertainty and of the likelihood for icing and severe production losses. Best results, both in terms of forecast skill and forecasted uncertainty, were achieved using both the ensemble forecast and the neighbourhood method combined. This demonstrates that the application of probabilistic forecasting for wind power in cold climate can be valuable when planning next-day energy production, in the usage of de-icing systems, and for site safety.


2013 ◽  
Vol 17 (1) ◽  
pp. 177-185 ◽  
Author(s):  
D. Leedal ◽  
A. H. Weerts ◽  
P. J. Smith ◽  
K. J. Beven

Abstract. The Delft Flood Early Warning System provides a versatile framework for real-time flood forecasting. The UK Environment Agency has adopted the Delft framework to deliver its National Flood Forecasting System. The Delft system incorporates new flood forecasting models very easily using an "open shell" framework. This paper describes how we added the data-based mechanistic modelling approach to the model inventory and presents a case study for the Eden catchment (Cumbria, UK).


2019 ◽  
Vol 38 (7) ◽  
pp. 520-524 ◽  
Author(s):  
Ge Jin ◽  
Kevin Mendoza ◽  
Baishali Roy ◽  
Darryl G. Buswell

Low-frequency distributed acoustic sensing (LFDAS) signal has been used to detect fracture hits at offset monitor wells during hydraulic fracturing operations. Typically, fracture hits are manually identified, which can be subjective and inefficient. We implemented machine learning-based models using supervised learning techniques in order to identify fracture zones, which demonstrate a high probability of fracture hits automatically. Several features are designed and calculated from LFDAS data to highlight fracture-hit characterizations. A simple neural network model is trained to fit the manually picked fracture hits. The fracture-hit probability, as predicted by the model, agrees well with the manual picks in training, validation, and test data sets. The algorithm was used in a case study of an unconventional reservoir. The results indicate that smaller cluster spacing design creates denser fractures.


2016 ◽  
Vol 21 (4) ◽  
pp. 05015031 ◽  
Author(s):  
Jen-Kuo Huang ◽  
Ya-Hsin Chan ◽  
Kwan Tun Lee

2003 ◽  
Vol 16 (19) ◽  
pp. 3153-3170 ◽  
Author(s):  
Frédéric Vitart ◽  
Magdalena Alonso Balmaseda ◽  
Laura Ferranti ◽  
David Anderson

2000 ◽  
Vol 27 (6) ◽  
pp. 1311-1315 ◽  
Author(s):  
Daniel Lavallée ◽  
Luc Roy ◽  
Claude Marche

Increasing occupation of flood plains augments the number of residents affected with flashfloods. Temporary protection measures can be considered as long as the authorities are warned soon enough before the occurrence of a flood. A simple forecasting system is presented in this technical note. It is based on the coupling of one hydrological model with one hydraulic model, and on a data acquisition and result analysis module. A case study is also presented.Key words: flashfloods, civil protection, flood, warning.[Journal translation]


Sign in / Sign up

Export Citation Format

Share Document