Predictions on atomic structures of Ti1−xMoxC using combined approach of first-principles calculation and the cluster expansion method

2009 ◽  
Vol 15 (5) ◽  
pp. 797-801 ◽  
Author(s):  
Seung-Cheol Lee ◽  
Young-Su Lee ◽  
Woo-Sang Jung ◽  
Jung-Hae Choi
RSC Advances ◽  
2020 ◽  
Vol 10 (41) ◽  
pp. 24410-24418
Author(s):  
Xi Xu ◽  
Hong Jiang

Anion order in perovskite oxynitrides is investigated by a combination of first-principles calculations, cluster expansion method and Monte Carlo simulations.


2020 ◽  
Vol 8 ◽  
Author(s):  
Christopher Sutton ◽  
Sergey V. Levchenko

In most applications, functional materials operate at finite temperatures and are in contact with a reservoir of atoms or molecules (gas, liquid, or solid). In order to understand the properties of materials at realistic conditions, statistical effects associated with configurational sampling and particle exchange at finite temperatures must consequently be taken into account. In this contribution, we discuss the main concepts behind equilibrium statistical mechanics. We demonstrate how these concepts can be used to predict the behavior of materials at realistic temperatures and pressures within the framework of atomistic thermodynamics. We also introduce and discuss methods for calculating phase diagrams of bulk materials and surfaces as well as point defect concentrations. In particular, we describe approaches for calculating the configurational density of states, which requires the evaluation of the energies of a large number of configurations. The cluster expansion method is therefore also discussed as a numerically efficient approach for evaluating these energies.


2021 ◽  
Vol MA2021-02 (3) ◽  
pp. 310-310
Author(s):  
Mamonamane Gratitude Mphahlele ◽  
Mallang Cliffton Masedi ◽  
Phuti Esrom Ngoepe ◽  
Raesibe Sylvia Ledwaba

Sign in / Sign up

Export Citation Format

Share Document