Numerical simulation of continuous casting process of different steel grades considering solidification and mixing of different steel grades

2015 ◽  
Vol 21 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Myunggeun Jeong ◽  
Changyoung Choi ◽  
Man Yeong Ha ◽  
Sung Jool Kim ◽  
Joong Kil Park ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 972
Author(s):  
Miran Brezocnik ◽  
Uroš Župerl

Štore Steel Ltd. is one of the major flat spring steel producers in Europe. Until 2016 the company used a three-strand continuous casting machine with 6 m radius, when it was replaced by a completely new two-strand continuous caster with 9 m radius. For the comparison of the tensile strength of 41 hypoeutectoid steel grades, we conducted 1847 tensile strength tests during the first period of testing using the old continuous caster, and 713 tensile strength tests during the second period of testing using the new continuous caster. It was found that for 11 steel grades the tensile strength of the rolled material was statistically significantly lower (t-test method) in the period of using the new continuous caster, whereas all other steel grades remained the same. To improve the new continuous casting process, we decided to study the process in more detail using the Multiple Linear Regression method and the Genetic Programming approach based on 713 items of empirical data obtained on the new continuous casting machine. Based on the obtained models of the new continuous casting process, we determined the most influential parameters on the tensile strength of a product. According to the model’s analysis, the secondary cooling at the new continuous caster was improved with the installation of a self-cleaning filter in 2019. After implementing this modification, we performed an additional 794 tensile tests during the third period of testing. It was found out that, after installation of the self-cleaning filter, in 6 steel grades out of 19, the tensile strength in rolled condition improved statistically significantly, whereas all the other steel grades remained the same.


2012 ◽  
Vol 57 (1) ◽  
pp. 355-361 ◽  
Author(s):  
K. Sołek ◽  
L. Trębacz

Thermo-Mechanical Model of Steel Continuous Casting Process In the paper a numerical model of heat and mass transfer in the mould zone in the steel continuous casting technology was presented. The model has been developed using ProCAST software designed for simulation of casting processes. It allows to determine temperature and stress distribution in continuous castings in order to optimize the most important process parameters. In this work calculations were executed for low carbon steel grades casted in the industry. In the simulations the real rheological properties measured in the experimental work and the boundary conditions determined on the basis of the industrial data were used.


Sign in / Sign up

Export Citation Format

Share Document