strength tests
Recently Published Documents


TOTAL DOCUMENTS

1175
(FIVE YEARS 389)

H-INDEX

30
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 552
Author(s):  
Rafał Nowak ◽  
Tomasz Kania ◽  
Radosław Rutkowski ◽  
Ewa Ekiert

The study presents the terrestrial laser scanning (TLS) diagnostic of the clay brick masonry arched staircase in a historic building. Based on the measurements of the existing arched stair flights, 1:1 scale experimental models with and without stair treads were made. Strength tests of the models were carried out for different concentrated force locations in relation to the supporting structure. Force, deflections and reaction in the upper support of the run were measured during the tests. The influence of the masonry steps on the curved vault on the load capacity and stiffness of the run structure was analyzed. The conducted experimental investigations showed that the key element responsible for the actual load-bearing capacity and stiffness of this type of stair flights were the treads above the masonry arch.


2022 ◽  
Vol 14 (2) ◽  
pp. 773
Author(s):  
Tsz Ying Hui ◽  
Lorena Skevi ◽  
Bianca Reeksting ◽  
Susanne Gebhard ◽  
Kevin Paine

Despite being associated with lower carbon emissions, CEM II cementitious materials exhibit reduced early age strength compared to that of CEM I. Several studies have demonstrated early age strength improvements by incorporating bacterial cells in concrete. In this study, live vegetative bacteria and dead bacteria killed in two different ways were used to explore whether changes in strength are related to the bacteria’s viability or their surface morphology. Compressive and flexural strength tests were performed at mortars with and without bacteria for both CEM I and CEM II cement. Their microstructure, porosity and mineralogy were also examined. No net strength gain was recorded for either CEM I or CEM II bacterial mortars compared to non-bacterial controls, although changes in the porosity were reported. It is proposed that two phenomena, one causing strength-reduction and one causing strength-gain, took place in the bacterial specimens, simultaneously. It is suggested that each phenomenon is dependent on the alkalinity of the cement matrix, which differs between CEM I and CEM II mortars at early age. Nevertheless, in neither case could it be recommended that the addition of bacteria is an effective way of increasing the early age strength of mortars.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 512
Author(s):  
Zhi Cheng ◽  
Xinrong Cheng ◽  
Yuchao Xie ◽  
Zhe Ma ◽  
Yuhao Liu

Desulfurization ash and fly ash are solid wastes discharged from boilers of power plants. Their utilization rate is low, especially desulfurization ash, most of which is stored. In order to realize their resource utilization, they are used to modify loess in this paper. Nine group compaction tests and 32 group direct shear tests are done in order to explore the influence law of desulfurization ash and fly ash on the strength of the loess. Meanwhile, FLAC3D software is used to numerically simulate the direct shear test, and the simulation results and the test results are compared and analyzed. The results show that, with the increase of desulfurization ash’s amount, the shear strength of the modified loess increases first and then decreases. The loess modified by the fly ash has the same law with that of the desulfurization ash. The best mass ratio of modified loess is 80:20. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 12.74% higher than that of the pure loess on average and the shear strength of loess modified by fly ash is 3.59% higher than that of the pure loess on average. The effect of the desulfurization ash on modifying the loess is better than that of the fly ash. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 9.15% higher than that of the fly ash on average. Comparing the results of the simulation calculation with the actual test results, the increase rate of the shear stress of the FLAC3D simulation is larger than that of the actual test, and the simulated shear strength is about 8.21% higher than the test shear strength.


Mechanik ◽  
2022 ◽  
Vol 95 (1) ◽  
pp. 12-14
Author(s):  
Mateusz Rudnik

The article presents the results of compressive strength tests of cylindrical samples with a hexagonal cell structure. The samples were made of MED 610 material using the photo-curing technology liquid polymer resins. The compressive strength was estimated on the basis of a static compression test of the printed elements. It has been shown that the PolyJet Matrix 3D printing technology enables the printing models with a thin-walled cell structure, which, while maintaining the appropriate strength properties, can be used in the design and production of certain utility models.


Author(s):  
Grzegorz Kowaleczko ◽  
Lukasz Piatkowski

The aim of the study is to assess the loads that are transferred from the main rotor and the tail rotor to the helicopter fuselage. These loads change in the various phases of the transient flight as a result of the variable control of the maneuver and as a result of the variable flow around the blades. The knowledge of the loads allows for the proper selection of the level of excitations that should load the fuselage structure during fatigue and strength tests. The simulation model describing the helicopter flight is discussed. This model takes into account the motion of each blade relative to its hinges. Results are shown for two maneuvers - pullup/pushover and diving. The values of extreme loads transferred to the fuselage were obtained.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 235
Author(s):  
Dominika Grygier ◽  
Maciej Kujawa ◽  
Piotr Kowalewski

Nowadays, the replacement of a hip joint is a standard surgical procedure. However, researchers have continuingly been trying to upgrade endoprostheses and make them more similar to natural joints. The use of 3D printing could be helpful in such cases, since 3D-printed elements could mimic the natural lubrication mechanism of the meniscus. In this paper, we propose a method to deposit plastics directly on titanium alloy using 3D printing (FDM). This procedure allows one to obtain endoprostheses that are more similar to natural joints, easier to manufacture and have fewer components. During the research, biocompatible polymers suitable for 3D FDM printing were used, namely polylactide (PLA) and polyamide (PA). The research included tensile and shear tests of metal–polymer bonds, friction coefficient measurements and microscopic observations. The friction coefficient measurements revealed that only PA was promising for endoprostheses (the friction coefficient for PLA was too high). The strength tests and microscopic observations showed that PLA and PA deposition by 3D FDM printing directly on Ti6Al4V titanium alloy is possible; however, the achieved bonding strength and repeatability of the process were unsatisfactory. Nevertheless, the benefits arising from application of this method mean that it is worthwhile to continue working on this issue.


Author(s):  
Theodore Gautier Bikoko ◽  
Jean Claude Tchamba ◽  
Valentine Yato Katte ◽  
Divine Kum Deh

To fight against the high cost and the increasing scarcity of cement and at the same time to reduce the CO2 greenhouse gases emission associated with the production of Portland cement, two types of wood ashes as a substitute of cement in the production of concretes were investigated. In this paper, we substituted cement by two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 30 % on one hand, and on the other hand, we added these two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 10 % by weight of cement in the concrete samples. After 7, 14 and 28 days of curing, compressive strength tests were conducted on these concrete samples. The findings revealed that using wood ashes as additives/admixtures or as a substitute of cement in the production/manufacturing of concrete decreased the compressive strength of concrete. Hence, it can be said that wood ash has a negative influence on the strength of concrete. At three percent (3%) and ten percent (10%) of addition, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie, whereas at five percent (5%) of addition, the wood ash from avocado specie offers better resistance compared to the wood ash from eucalyptus specie. At thirty percent (30%) of substitution, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie. The compressive strengths increase with the increase of curing age.


2022 ◽  
Vol 3 (1) ◽  
pp. 64-77
Author(s):  
Anna Rudawska ◽  
Magd Abdel Wahab ◽  
Miroslav Müller ◽  
Dana Stančeková

This paper presents issues related to the determination of the selected mechanical properties of adhesive joints made of polymeric pipes and the evaluation of the leak-tightness of the adhesive joints. The article attempts to demonstrate that the type of adhesive may affect the quality of adhesive joints in terms of both tightness and strength of joints. Five types of the polymer pipes differing in a polypropylene and a polyvinyl chloride, diameter and a wall thickness were used in the experiments. Two types of the adhesives were used to make the adhesive joints: Loctite 3430 A&B Hysol, a two-component epoxy adhesive, and Loctite 406, a one-component cyanoacrylate adhesive. Based on the leak-tightness tests results, it was possible to determine the quality of their adhesive joints without damaging the samples, while their tensile strength was determined through the strength tests. The tests performed allowed for the conclusion that the use of the polyvinyl chloride pipes and Loctite 406 one-component adhesive is recommended for this type of adhesive joints.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Zezhou Guo ◽  
Ruihua Hao ◽  
Qianli Lv ◽  
...  

Aiming to investigate salt-frost heaving rules and the mechanical properties of natural saline soil along the Duku Highway subjected to multiple freezing-thawing cycles, we collected natural saline soil samples from the alluvial-proluvial plain in front of the Dushanzi Mountain at the starting point of the Duku Highway. Then, we conducted mineral composition analysis tests, essential laboratory physical property measurement, large scale multiple freezing-thawing cyclic salt-frost heaving tests, shear strength tests, and unconfined compressive strength tests on the samples. According to the test results presented, the collected saline soil differed from saline soil in other regions and fell into “chlorite saline soils.” As the number of freezing-thawing cycles increased, the overall salt-frost heaving capacity increased and then decreased in the freezing process but first reduced and then increased in the thawing process. Thus, the salt-frost heaving capacity was cumulative in freezing/thawing cycles. The peak salt-frost heaving capacity reached a maximum after 1 freezing-thawing cycle and then dropped drastically and fluctuated regularly. After 6 freezing-thawing cycles, the displacement deformation and time formed a new equilibrium. After 7 freezing-thawing cycles, the displacement and deformation of the soil no longer appear negative. As the number of freezing-thawing cycles increased, the cohesive force of saline soil first increased and then dropped steadily, the internal friction angle first dropped and then increased steadily, and the unconfined shear strength first increased and then decreased. These research results provided data supporting the prevention and controlling highway saline soil disasters with insightful references for the other projects in this region.


2022 ◽  
Vol 2153 (1) ◽  
pp. 012003
Author(s):  
N Afanador-Garcia ◽  
G Guerrero-Gomez ◽  
R Gallardo-Amaya

Abstract In this research project,the deformations in the longitudinal and transverse reinforcing steel of a reinforced concrete beam with 2ϕ½” were estimated.Additionally,the displacements in thecenter of thespanweremeasuredtogether with theloads, which generatedthecrackingof the beam of dimensions180 mm×240 mm×3100 mm.Displacement were performed using a linear variable displacement transducer, and strain gauges were used to measure deformations. Finally, the applied load’s measurements were obtained with a load cell Pinzuar/Model-100/20T equipment.The physical-mechanical properties of the concreteused were determined through compressive strength tests at 28 days and modulus of elasticity.For this purpose, a load-bearing frame was used to support the beam at three points for load application.The data was collected directly on the Quantum/X2 equipment and analyzed with the help of the Catman/AP software.The maximum deformations found in the bending test at three point since there inforced concrete beam we are not greater than 8483µm/mm,presenting a failure in the center of the beam due to the creep of the tensile steel for a maximum load of 3115 Kg.Finally,the physical behavior of there inforced concrete beam with applying aload allows evaluating and optimizing this kind of systems.


Sign in / Sign up

Export Citation Format

Share Document