scholarly journals Solving Combinatorial Optimization Problems Using Augmented Lagrange Chaotic Simulated Annealing

2011 ◽  
Vol 19 (1-2) ◽  
pp. 171-179 ◽  
Author(s):  
Lipo Wang ◽  
Fuyu Tian ◽  
Boon Hee Soong ◽  
Chunru Wan
2013 ◽  
Vol 651 ◽  
pp. 879-884
Author(s):  
Qi Wang ◽  
Ying Min Wang ◽  
Yan Ni Gou

The matched field processing (MFP) for localization usually needs to match all the replica fields in the observation sea with the received fields, and then find the maximum peaks in the matched results, so how to find the maximum in the results effectively and quickly is a problem. As known the classical simulated annealing (CSA) which has the global optimization capability is used widely for combinatorial optimization problems. For passive localization the position of the source can be recognized as a combinatorial optimization problem about range and depth, so a new matched field processing based on CSA is proposed. In order to evaluate the performance of this method, the normal mode was used to calculate the replica field. Finally the algorithm was evaluated by the dataset in the Mediterranean Sea in 1994. Comparing to the conventional matched field passive localization (CMFP), it can be conclude that the new one can localize optimum peak successfully where the output power of CMFP is maximum, meanwhile it is faster than CMFP.


2004 ◽  
Vol 18 (17n19) ◽  
pp. 2579-2584 ◽  
Author(s):  
Y. C. FENG ◽  
X. CAI

A transiently chaotic neural network (TCNN) is an approximation method for combinatorial optimization problems. The evolution function of self-back connect weight, called annealing function, influences the accurate and search speed of TCNN model. This paper analyzes two common annealing schemes. Furthermore we proposed a new subsection exponential annealing function. Finally, we compared these annealing schemes in TSP problem.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaodong Yan ◽  
Jiahui Ma ◽  
Tong Wu ◽  
Aoyang Zhang ◽  
Jiangbin Wu ◽  
...  

AbstractNeuromorphic hardware implementation of Boltzmann Machine using a network of stochastic neurons can allow non-deterministic polynomial-time (NP) hard combinatorial optimization problems to be efficiently solved. Efficient implementation of such Boltzmann Machine with simulated annealing desires the statistical parameters of the stochastic neurons to be dynamically tunable, however, there has been limited research on stochastic semiconductor devices with controllable statistical distributions. Here, we demonstrate a reconfigurable tin oxide (SnOx)/molybdenum disulfide (MoS2) heterogeneous memristive device that can realize tunable stochastic dynamics in its output sampling characteristics. The device can sample exponential-class sigmoidal distributions analogous to the Fermi-Dirac distribution of physical systems with quantitatively defined tunable “temperature” effect. A BM composed of these tunable stochastic neuron devices, which can enable simulated annealing with designed “cooling” strategies, is conducted to solve the MAX-SAT, a representative in NP-hard combinatorial optimization problems. Quantitative insights into the effect of different “cooling” strategies on improving the BM optimization process efficiency are also provided.


Author(s):  
Ken Ferens ◽  
Darcy Cook ◽  
Witold Kinsner

This paper proposes the application of chaos in large search space problems, and suggests that this represents the next evolutionary step in the development of adaptive and intelligent systems towards cognitive machines and systems. Three different versions of chaotic simulated annealing (XSA) were applied to combinatorial optimization problems in multiprocessor task allocation. Chaotic walks in the solution space were taken to search for the global optimum or “good enough” task-to-processor allocation solutions. Chaotic variables were generated to set the number of perturbations made in each iteration of a XSA algorithm. In addition, parameters of a chaotic variable generator were adjusted to create different chaotic distributions with which to search the solution space. The results show that the convergence rate of the XSA algorithm is faster than simulated annealing when the solutions are far apart in the solution space. In particular, the XSA algorithms found simulated annealing’s best result on average about 4 times faster than simulated annealing.


Sign in / Sign up

Export Citation Format

Share Document