Existence of Solutions for a Nonlocal Boundary Value Problem at Resonance on the Half-Line

Author(s):  
S. Djafri ◽  
T. Moussaoui ◽  
D. O’Regan
2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


2016 ◽  
Vol 53 (1) ◽  
pp. 42-52
Author(s):  
Katarzyna Szymańska-Dȩbowska

The paper focuses on existence of solutions of a system of nonlocal resonant boundary value problems , where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation. Imposing on the function f the following condition: the limit limλ→∞f(t, λ a) exists uniformly in a ∈ Sk−1, we have shown that the problem has at least one solution.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
O. F. Imaga ◽  
S. A. Iyase

AbstractIn this work, we consider the solvability of a fractional-order p-Laplacian boundary value problem on the half-line where the fractional differential operator is nonlinear and has a kernel dimension equal to two. Due to the nonlinearity of the fractional differential operator, the Ge and Ren extension of Mawhin’s coincidence degree theory is applied to obtain existence results for the boundary value problem at resonance. Two examples are used to validate the established results.


Sign in / Sign up

Export Citation Format

Share Document