fractional differential operator
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 52)

H-INDEX

12
(FIVE YEARS 4)

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 315
Author(s):  
Najla M. Alarifi ◽  
Rabha W. Ibrahim

(1) Background: There is an increasing amount of information in complex domains, which necessitates the development of various kinds of operators, such as differential, integral, and linear convolution operators. Few investigations of the fractional differential and integral operators of a complex variable have been undertaken. (2) Methods: In this effort, we aim to present a generalization of a class of analytic functions based on a complex fractional differential operator. This class is defined by utilizing the subordination and superordination theory. (3) Results: We illustrate different fractional inequalities of starlike and convex formulas. Moreover, we discuss the main conditions to obtain sandwich inequalities involving the fractional operator. (4) Conclusion: We indicate that the suggested class is a generalization of recent works and can be applied to discuss the upper and lower bounds of a special case of fractional differential equations.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhongqi Peng ◽  
Yuan Li ◽  
Qi Zhang ◽  
Yimin Xue

The Caputo conformable derivative is a new Caputo-type fractional differential operator generated by conformable derivatives. In this paper, using Banach fixed point theorem, we obtain the uniqueness of the solution of nonlinear and linear Cauchy problem with the conformable derivatives in the Caputo setting, respectively. We also establish two comparison principles and prove the extremal solutions for nonlinear fractional p -Laplacian differential system with Caputo conformable derivatives by utilizing the monotone iterative technique. An example is given to verify the validity of the results.


Author(s):  
Jian-Gen Liu ◽  
Xiao-Jun Yang ◽  
Yi-Ying Feng ◽  
Lu-Lu Geng

In this paper, we studied the generalized space and time fractional Korteweg–de Vries (KdV) equation in the sense of the Riemann–Liouville fractional derivative. Initially, the symmetry of this considered equation through the symmetry analysis method was obtained. Next, a one-parameter Lie group of point transformation was yielded. Then, this considered fractional model can be translated into an ordinary differential equation of fractional order via the Erdélyi–Kober fractional differential operator and the Erdélyi–Kober fractional integral operator. Finally, with the help of the nonlinear self-adjointness, conservation laws of the generalized space and time fractional KdV equation can be found. This approach can provide us with a new scheme for studying space and time differential equations of fractional derivative.


2021 ◽  
Vol 5 (4) ◽  
pp. 158
Author(s):  
George A. Anastassiou

Here we extended our earlier fractional monotone approximation theory to abstract fractional monotone approximation, with applications to Prabhakar fractional calculus and non-singular kernel fractional calculi. We cover both the left and right sides of this constrained approximation. Let f∈Cp−1,1, p≥0 and let L be a linear abstract left or right fractional differential operator such that Lf≥0 over 0,1 or −1,0, respectively. We can find a sequence of polynomials Qn of degree ≤n such that LQn≥0 over 0,1 or −1,0, respectively. Additionally f is approximated quantitatively with rates uniformly by Qn with the use of first modulus of continuity of fp.


2021 ◽  
Vol 5 (4) ◽  
pp. 139
Author(s):  
Thanin Sitthiwirattham ◽  
Muhammad Arfan ◽  
Kamal Shah ◽  
Anwar Zeb ◽  
Salih Djilali ◽  
...  

In the analysis in this article, we developed a scheme for the computation of a semi-analytical solution to a fuzzy fractional-order heat equation of two dimensions having some external diffusion source term. For this, we applied the Laplace transform along with decomposition techniques and the Adomian polynomial under the Caputo–Fabrizio fractional differential operator. Furthermore, for obtaining a semi-analytical series-type solution, the decomposition of the unknown quantity and its addition established the said solution. The obtained series solution was calculated and approached the approximate solution of the proposed equation. For the validation of our scheme, three different examples have been provided, and the solutions were calculated in fuzzy form. All the three illustrations simulated two different fractional orders between 0 and 1 for the upper and lower portions of the fuzzy solution. The said fractional operator is nonsingular and global due to the presence of the exponential function. It globalizes the dynamical behavior of the said equation, which is guaranteed for all types of fuzzy solution lying between 0 and 1 at any fractional order. The fuzziness is also included in the unknown quantity due to the fuzzy number providing the solution in fuzzy form, having upper and lower branches.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Najla M. Alarifi ◽  
Rabha W. Ibrahim

Newly, the field of fractional differential operators has engaged with many other fields in science, technology, and engineering studies. The class of fractional differential and integral operators is considered for a real variable. In this work, we have investigated the most applicable fractional differential operator called the Prabhakar fractional differential operator into a complex domain. We express the operator in observation of a class of normalized analytic functions. We deal with its geometric performance in the open unit disk.


Sign in / Sign up

Export Citation Format

Share Document