Existence of solutions for coupled integral boundary value problem at resonance

2016 ◽  
Vol 89 (1-2) ◽  
pp. 73-88 ◽  
Author(s):  
YUJUN CUI
2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


2016 ◽  
Vol 53 (1) ◽  
pp. 42-52
Author(s):  
Katarzyna Szymańska-Dȩbowska

The paper focuses on existence of solutions of a system of nonlocal resonant boundary value problems , where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation. Imposing on the function f the following condition: the limit limλ→∞f(t, λ a) exists uniformly in a ∈ Sk−1, we have shown that the problem has at least one solution.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Man Xu ◽  
Ruyun Ma

We investigate the spectrum structure of the eigenvalue problem u4x=λux,  x∈0,1;  u0=u1=u′0=u′1=0. As for the application of the spectrum structure, we show the existence of solutions of the fourth-order boundary value problem at resonance -u4x+λ1ux+gx,ux=hx,  x∈0,1;  u0=u1=u′0=u′1=0, which models a statically elastic beam with both end-points being cantilevered or fixed, where λ1 is the first eigenvalue of the corresponding eigenvalue problem and nonlinearity g may be unbounded.


1997 ◽  
Vol 40 (4) ◽  
pp. 464-470 ◽  
Author(s):  
Chung-Cheng Kuo

AbstractWe study the existence of solutions of the semilinear equations (1) in which the non-linearity g may grow superlinearly in u in one of directions u → ∞ and u → −∞, and (2) −Δu + g(x, u) = h, in which the nonlinear term g may grow superlinearly in u as |u| → ∞. The purpose of this paper is to obtain solvability theorems for (1) and (2) when the Landesman-Lazer condition does not hold. More precisely, we require that h may satisfy are arbitrarily nonnegative constants, . The proofs are based upon degree theoretic arguments.


2011 ◽  
Vol 2011 ◽  
pp. 1-40 ◽  
Author(s):  
Guizhen Zhi ◽  
Yunrui Guo ◽  
Yan Wang ◽  
Qihu Zhang

This paper investigates the existence of solutions for a class of variable exponent integrodifferential system with multipoint and integral boundary value condition in half line. When the nonlinearity termfsatisfies sub-(p−−1) growth condition or general growth condition, we give the existence of solutions and nonnegative solutions via Leray-Schauder degree at nonresonance, respectively. Moreover, the existence of solutions for the problem at resonance has been discussed.


Sign in / Sign up

Export Citation Format

Share Document