scholarly journals Relativistic ponderomotive self-focusing of quadruple Gaussian laser beam in cold quantum plasma

2018 ◽  
Vol 36 (3) ◽  
pp. 353-358 ◽  
Author(s):  
Richa ◽  
Munish Aggarwal ◽  
Harish Kumar ◽  
Ranju Mahajan ◽  
Navdeep Singh Arora ◽  
...  

AbstractIn the present paper, we have investigated self-focusing of the quadruple Gaussian laser beam in underdense cold quantum plasma. The non-linearity chosen is associated with the relativistic mass effect that arises due to quiver motion of electron and electron density perturbation caused by ponderomotive force. The non-linearity modifies the plasma frequency in the dielectric function and hence the refractive index of the medium. The focusing/defocusing of the quadruple laser depends on the refractive index of the medium. We have set up non-linear differential equation that controls the beam width parameter by using well-known paraxial ray approximation and Wentzel–Krammers–Brillouin approximation. The effect of intensity parameter and electron temperature is observed on laser beam self-focusing in the presence of cold quantum plasma. From the results, it is revealed that electron temperature and the initial intensity of the laser beam control the profile dynamics of the laser beam.

2016 ◽  
Vol 34 (3) ◽  
pp. 426-432 ◽  
Author(s):  
H. Kumar ◽  
M. Aggarwal ◽  
Richa ◽  
T.S. Gill

AbstractIn the present paper, we have investigated self-focusing of Gaussian laser beam in relativistic ponderomotive (RP) cold quantum plasma. When de Broglie wavelength of charged particles is greater than or equal to the inter particle distance or equivalently the temperature is less than or equal to the Fermi temperature, quantum nature of the plasma constituents cannot be ignored. In this context, we have reported self-focusing on account of nonlinear dielectric contribution of RP plasma by taking into consideration the impact of quantum effects. We have setup the nonlinear differential equation for the beam-width parameter by paraxial ray and Wentzel Kramers Brillouin approximation and solved it numerically by the Runge Kutta Fourth order method. Our results show that additional self-focusing is achieved in case of RP cold quantum plasma than relativistic cold quantum plasma and classical relativistic case. The pinching effect offered by quantum plasma and the combined effect of relativistic and ponderomotive nonlinearity greatly enhances laser propagation up to 20 Rayleigh lengths.


2019 ◽  
Vol 37 (4) ◽  
pp. 435-441 ◽  
Author(s):  
Munish Aggarwal ◽  
Vimmy Goyal ◽  
Richa Kashyap ◽  
Harish Kumar ◽  
Tarsem Singh Gill

AbstractSelf-focusing of Gaussian laser beam has been investigated in quantum plasma under the effect of applied axial magnetic field. The nonlinear differential equation has been derived for studying the variations in the beam-width parameter. The effect of initial plasma electron temperature and the axial magnetic field on self-focusing and normalized intensity are studied. Our investigation reveals that normalized intensity increases to tenfolds where quantum effects are dominant. The normalized intensity further increases to twelvefolds on increasing the magnetic field.


1999 ◽  
Vol 62 (4) ◽  
pp. 389-396 ◽  
Author(s):  
M. V. ASTHANA ◽  
A. GIULIETTI ◽  
DINESH VARSHNEY ◽  
M. S. SODHA

This paper presents an analysis of the relativistic self-focusing of a rippled Gaussian laser beam in a plasma. Considering the nonlinearity as arising owing to relativistic variation of mass, and following the WKB and paraxial-ray approximations, the phenomenon of self-focusing of rippled laser beams is studied for arbitrary magnitude of nonlinearity. Pandey et al. [Phys. Fluids82, 1221 (1990)] have shown that a small ripple on the axis of the main beam grows very rapidly with distance of propagation as compared with the self-focusing of the main beam. Based on this analogy, we have analysed relativistic self-focusing of rippled beams in plasmas. The relativistic intensities with saturation effects of nonlinearity allow the nonlinear refractive index in the paraxial regime to have a slower radial dependence, and thus the ripple extracts relatively less energy from its neighbourhood.


2009 ◽  
Vol 27 (4) ◽  
pp. 587-593 ◽  
Author(s):  
A. Singh ◽  
M. Aggarwal ◽  
T.S. Gill

AbstractIn the present paper, we have investigated the growth of a Gaussian perturbation superimposed on a Gaussian laser beam. The nonlinearity we have considered is of relativistic type. We have setup the nonlinear differential equations for beam width parameter of the main beam, growth and width of the laser spike by using the WKB and paraxial ray approximation. These are coupled ordinary differential equations and therefore these are simultaneously solved numerically using the Runge Kutta method. It has been observed from the analysis that self-focusing/defocusing of the main beam and the spike determine the growth dynamic of the spike.


2017 ◽  
Vol 35 (4) ◽  
pp. 699-705 ◽  
Author(s):  
M. Aggarwal ◽  
V. Goyal ◽  
Richa ◽  
H. Kumar ◽  
T.S. Gill

AbstractIn the present paper, we have studied self-focusing of Gaussian laser beam in weakly relativistic magnetized cold quantum plasma. When interparticle distance is comparable to the de Broglie wavelength of charged particles, we cannot neglect the quantum contribution of plasma constituents. Therefore, propagation characteristics are studied by taking in to account quantum contribution in the presence of static magnetic field applied along the beam propagation. Our results show that the magnetic field plays a key role in achieving additional focusing, it modifies the quiver motion of electrons by adding cyclotron frequency to the natural frequency of oscillating electrons during laser beam propagation. The results are compared with those of weakly relativistic quantum plasma and weakly relativistic magnetized plasma. The self-focusing is found to be more pronounced when axial magnetic field is increased in the present model. We have setup the non-linear differential equation for the evolution of beam-width parameter by well-known paraxial ray approximation and solved it with the help of computational technique.


2018 ◽  
Vol 36 (2) ◽  
pp. 179-185 ◽  
Author(s):  
Harish Kumar ◽  
Munish Aggarwal ◽  
Richa ◽  
Dinkar Sharma ◽  
Sumit Chandok ◽  
...  

AbstractThe paper presents an investigation on self-focusing of cosh-Gaussian (ChG) laser beam in a relativistic–ponderomotive non-uniform plasma. It is observed numerically that the selection of decentered parameter and initial beam radius determines the focusing/defocusing of ChG laser beam. For given value of these parameters, the plasma density ramp of suitable length can avoid defocusing and enhance focusing effect significantly. Focusing length and extent of focusing may also be controlled by varying slope of the ramp density. A comparison with Gaussian beam has also been attempted for optimized set of parameters. The results establish that ChG beam focuses earlier and sharper relative to Gaussian beam. We have setup the non-linear differential equation for the beam width parameter using Wentzel–Kramers–Brillouin and paraxial ray approximation and solved it numerically using Runge–Kutta method.


2017 ◽  
Vol 35 (1) ◽  
pp. 137-144 ◽  
Author(s):  
N. Ahmad ◽  
S. T. Mahmoud ◽  
G. Purohit

AbstractA paraxial ray formalism is developed to study the evolution of an on axis intensity spike on a Gaussian laser beam in a plasma dominated by relativistic and ponderomotive non-linearities. Ion motion is taken to be frozen. A single beam width parameter characterizes the evolution of the spike. The spike introduces two competing influences: diffraction divergence and self-convergence. The former grows with the reduction in spot size of the spike, while the latter depends on the gradient in non-linear permittivity. Parameter δ = (ωpr00/c) a00/(3.5 r00/r01) characterizes the relative importance of the two, where r01 and r00 are the spike and main beam radii, ωp is the plasma frequency, and a00 is the normalized laser amplitude. For δ > 1, the intensity ripple causes faster self-focusing of the beam; higher the ripple amplitude stronger the focusing. In the opposite limit, diffraction divergence increases more rapidly, slowing down the self-focusing of the beam. As the beam intensity rises due to self-focusing, it causes stronger generation of the third harmonic.


2017 ◽  
Vol 35 (1) ◽  
pp. 100-107 ◽  
Author(s):  
S. Kaur ◽  
M. Kaur ◽  
R. Kaur ◽  
T.S. Gill

AbstractIn the present research work, the authors have investigated the self-focusing and defocusing of Hermite-cosh-Gaussian laser (HChG) beam in an inhomogeneous rippled density plasmas. By taking the relativistic non-linearity into account, an equation for envelope is set up and solved using Wentzel–Kramers–Brillouin and the paraxial ray approximation. An ordinary non-linear differential equation governing the beam width parameter as a function of propagation distance is set up for different mode structures of the beam. Further, a numerical study of this differential equation is carried for suitable set of plasma and laser parameters. The beam undergoes periodic self-focusing/defocusing due to relativistic non-linearity. We also report the comparison between self-focusing/defocusing of HChG beam in the absence and presence of density ripple. Presence of ripple does not only leads to substantial increase in self-focusing length, but also results in oscillatory character with decreasing f. In a relativistic case, strong oscillatory self-focusing and defocusing is observed. Further, self-focusing is enhanced with increased value of decentered parameter.


2020 ◽  
Vol 75 (7) ◽  
pp. 671-675
Author(s):  
Niti Kant ◽  
Vishal Thakur

AbstractAn analysis of the self-focusing of highly intense chirped pulse laser under exponential plasma density ramp with higher order value of axial electron temperature has been done. Beam width parameter is derived by using paraxial ray approximation and then solved numerically. It is seen that self-focusing of chirped pulse laser is intensely affected by the higher order values of axial electron temperature. Further, influence of exponential plasma density ramp is studied and it is concluded that self-focusing of laser enhances and occurs earlier. On the other hand defocusing of beam reduces to the great extent. It is noticed that the laser spot size reduces significantly under joint influence of the density ramp and the axial electron temperature. Present analysis may be useful for the analysis of quantum dots, the laser induced fusion and etc.


Sign in / Sign up

Export Citation Format

Share Document