density perturbation
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 25)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Weisheng Lin ◽  
Xiaogang Wang ◽  
Xueqiao Xu ◽  
Defeng Kong ◽  
Yumin Wang ◽  
...  

Abstract Tritium self-sufficiency in future DT fusion reactor is a crucial challenge. As an engineering test reactor, CFETR requires a burning fraction of 3% for the goal to test the accessibility to the future fusion plant. To self-consistently simulate burning plasmas with profile changes in pellet injection scenarios and to estimate the corresponding burning fraction, a one-dimensional (1-D) multi-species radial transport model is developed in BOUT++ frame. Several pellet-fueling scenarios are then tested in the model. Results show that the increased fueling depth improves the burning fraction by particle confinement improvement and fusion power increase. Nevertheless, by increasing the depth, the pellet cooling-down may significantly lower the temperature in the core region. Taking the density perturbation into consideration, the reasonable parameters of the fueling scenario in these simulations are estimated as the pellet radius r_p=3 mm, the injection rate = 4 Hz , the pellet injection velocity =1000–2000 m/s without drift or 450 m/s with high filed side (HFS) drift.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shen Qu ◽  
Qixiang Cao ◽  
Fengchao Zhao ◽  
Xueren Wang ◽  
Xuru Duan ◽  
...  

Tritium breeding blanket (TBB) is an essential component in a fusion reactor, which has functions of tritium breeding, energy generation, and neutron shielding. Tritium breeding ratio (TBR) is a key parameter to evaluate whether the TBB could produce enough tritium to achieve the tritium self-sufficiency (TBR >1) for fusion reactor. Current codes or software are hard to meet the requirements of high efficiency, high resolution, and high automation for neutronic optimization of TBB. In this article, the application of the density perturbation calculation on a solid breeder TBB was first performed. Then, the method of the geometry perturbation calculation based on the virtual density theory was studied. Results and comparison analysis indicate that the 1st + 2nd-order neutronic perturbation calculations (including the density perturbation and the geometry perturbation) results are consistent with the transport results under a perturbation of −15% to +15%. It is proven to be valid to use the perturbation calculation for rapid TBR enhancement study of the solid breeder TBB.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Xiaokun Yang ◽  
Wu-Long Xu ◽  
Yong-Chang Huang

AbstractThe Dirac-Born-Infeld (DBI) field theory in string theory is important and can provide the field of the universe’s inflation. At the same time, it provides a causal mechanism for generating the original density perturbation, thereby providing the necessary density perturbation for existing the dense and sparse matter distributions of the universe. We deduce a symmetric DBI action, introduce it into inflationary cosmology to calculate various inflation parameters, further calculate the scalar perturbation spectrum and the tensor-scalar ratio, which are compared with Planck + WMAP9 + BAO data, the power spectrum predicted by the new general DBI inflation theory satisfies the CMB Experiment constraints, i.e., is consistent with the current theories and experimental observations. Consequently, the theory of this paper conforms to current experiments and is supplying the current theories, and also a new way of explaining the inflation of the universe.


Author(s):  
Francisco A. Delesma ◽  
Rogelio I. Delgado-Venegas ◽  
Dennis R. Salahub ◽  
Jorge M. del Campo ◽  
Jesús N. Pedroza-Montero ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahesh N. Shrivastava ◽  
Ajeet Kumar Maurya ◽  
Kondapalli Niranjan Kumar

AbstractThe influence of the South American total solar eclipse of 14th December 2020 on the ionosphere is studied by using the continuous Chilean Global Positioning System (GPS) sites across the totality path. The totality path with eclipse magnitude 1.012 passed through the Villarrica (Lon. 72.2308°W and Lat. 39.2820°S) in south Chile during 14:41:02.0 UTC to 17:30:58.1 UTC and maximum occurred ~ 16:03:49.5 UTC around the local noon. The vertical total electron content (VTEC) derived by GPS sites across the totality path for two PRN’s 29 and 31 show almost 20–40% of reduction with reference to ambient values. The percentage reduction was maximum close to totality site and decreases smoothly on both sides of totality sites. Interestingly, the atmospheric gravity waves (AGWs) with a period ~ 30–60 min obtained using wavelet analysis of VTEC timeseries show the presence of strong AGWs at the GPS sites located north of the totality line. But the AGWs do not show any significant effect on the VTEC values to these sites. Our analysis suggests, possibly an interplay between variability in the background plasma density and eclipse-generated AGWs induced plasma density perturbation could explain the observations.


Author(s):  
Ksh. Newton Singh ◽  
Shyam Das ◽  
Piyali Bhar ◽  
Monsur Rahaman ◽  
Farook Rahaman

We present an exact solution that could describe compact star composed of color-flavor locked (CFL) phase. Einstein’s field equations were solved through CFL equation of state (EoS) along with a specific form of [Formula: see text] metric potential. Further, to explore a generalized solution we have also included pressure anisotropy. The solution is then analyzed by varying the color superconducting gap [Formula: see text] and its effects on the physical parameters. The stability of the solution through various criteria is also analyzed. To show the physical validity of the obtained solution we have generated the [Formula: see text] curve and fitted three well-known compact stars. This work shows that the anisotropy of the pressure at the interior increases with the color superconducting gap leading to decrease in adiabatic index closer to the critical limit. Further, the fluctuating range of mass due to the density perturbation is larger for lower color superconducting gap leading to more stable configuration.


2021 ◽  
Vol 140 (7) ◽  
Author(s):  
J. Villalobos-Castro ◽  
B. A. Zúñiga-Gutiérrez ◽  
R. Flores-Moreno

Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


2021 ◽  
Vol 2 (1) ◽  
pp. 70-92
Author(s):  
Reiner L Stenzel ◽  
Johannes Grünwald ◽  
Codrina Ionita ◽  
Roman Schrittwieser ◽  
Manuel Urrutia

The properties of sheaths and associated potential structures and instabilities cover a broad field which even a review cannot cover everything. Thus, the focus will be on about a dozen examples, describe their observations and focus on the basic physical explanations for the effects, while further details are found in the references. Due to familiarity the review focuses mainly on the authors work but compared and referenced related work. The topics start with a high frequency oscillations near the electron plasma frequency. Low frequency instabilities also occur at the ion plasma frequency.The injection of ions into an electron-rich sheath widens the sheath and forms a double layer. Likewise, the injection of electrons into an ion rich sheath widens and establishes a double layer which occurs in free plasma injection into vacuum. The sheath widens and forms a double layer by ionization in an electron rich sheath. When particle fluxes in "fireballs" gets out of balance the double layer performs relaxation instabilities which has been studied extensively. Fireballs inside spherical electrodes create a new instability due to the transit time of trapped electrons. On cylindrical and spherical electrodes the electron rich sheath rotates in magnetized plasmas. Electrons rotate due to $\mathbf E \times \mathbf B_0$ which excites electron drift waves with azimuthal eigenmodes. Conversely a permanent magnetic dipole has been used as a negative electrode. The impact of energetic ions produces secondary electron emission, forming a ring of plasma around the magnetic equator. Such "magnetrons" are subject to various instabilities. Finally, the current to a positively biased electrode in a uniformly magnetized plasma is unstable to relaxation oscillations, which shows an example of global effects. The sheath at the electrode raises the potential in the flux tube of the electrode thereby creating a radial sheath which moves unmagnetized ions radially. The ion motion creates a density perturbation which affects the electrode current. If the electrode draws large currents the current disruptions create large inductive voltages on the electrode, which again produce double layers. This phenomenon has been seen in reconnection currents. Many examples of sheath properties will be explained. Although the focus is on the physics some examples of applications will be suggested such as neutral gas heating and accelerating, sputtering of plasma magnetrons and rf oscillators.


2021 ◽  
pp. 46-49
Author(s):  
O.K. Vynnyk ◽  
I.O. Anisimov

Wake wave excited by the resonant sequence of electron bunches grows to high amplitude after passage of several bunches. As electron bunches are injected into plasma at the same point, it results to high-amplitude plasma oscillations at the limited area in the plasma volume. Relaxation of the wake wave causes plasma heating via Landau damping. It moves to background plasma pressing-out from this area. So plasma density spatial distribution is disturbed. Such density profile deformation causes plasma frequency deviation, so that initial Cherenkov resonance is broken. Local plasma density decreases almost linearly with time. Front of the density perturbation has the shape similar to collision less shock wave.


Sign in / Sign up

Export Citation Format

Share Document