A note on strong duality theorem for a multiobjective higher order nondifferentiable symmetric dual programs

OPSEARCH ◽  
2015 ◽  
Vol 53 (1) ◽  
pp. 151-156
Author(s):  
Indira P. Debnath ◽  
S. K. Gupta ◽  
I. Ahmad
2013 ◽  
Vol 9 (3) ◽  
pp. 525-530 ◽  
Author(s):  
Xinmin Yang ◽  
◽  
Jin Yang ◽  
Heung Wing Joseph Lee ◽  
◽  
...  

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 372
Author(s):  
Liu He ◽  
Qi-Lin Wang ◽  
Ching-Feng Wen ◽  
Xiao-Yan Zhang ◽  
Xiao-Bing Li

In this paper, we introduce the notion of higher-order weak adjacent epiderivative for a set-valued map without lower-order approximating directions and obtain existence theorem and some properties of the epiderivative. Then by virtue of the epiderivative and Benson proper efficiency, we establish the higher-order Mond-Weir type dual problem for a set-valued optimization problem and obtain the corresponding weak duality, strong duality and converse duality theorems, respectively.


2019 ◽  
Vol 38 (4) ◽  
pp. 181-195 ◽  
Author(s):  
Rasheed Al-Salih ◽  
Martin J. Bohner

Separated linear programming problems can be used to model a wide range of real-world applications such as in communications, manufacturing, transportation, and so on. In this paper, we investigate novel formulations for two classes of these problems using the methodology of time scales. As a special case, we obtain the classical separated continuous-time model and the state-constrained separated continuous-time model. We establish some of the fundamental theorems such as the weak duality theorem and the optimality condition on arbitrary time scales, while the strong duality theorem is presented for isolated time scales. Examples are given to demonstrate our new results


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
S. K. Padhan ◽  
C. Nahak

We introduce a higher-order duality (Mangasarian type and Mond-Weir type) for the control problem. Under the higher-order generalized invexity assumptions on the functions that compose the primal problems, higher-order duality results (weak duality, strong duality, and converse duality) are derived for these pair of problems. Also, we establish few examples in support of our investigation.


2018 ◽  
Vol 13 (01) ◽  
pp. 2050020
Author(s):  
Vivek Singh ◽  
Anurag Jayswal ◽  
S. Al-Homidan ◽  
I. Ahmad

In this paper, we present a new class of higher order [Formula: see text]-[Formula: see text]-invex functions over cones. Further, we formulate two types of higher order dual models for a vector optimization problem over cones containing support functions in objectives as well as in constraints and establish several duality results, viz., weak and strong duality results.


Author(s):  
G.–Y. Chen ◽  
B. D. Craven

AbstractAn approximate dual is proposed for a multiobjective optimization problem. The approximate dual has a finite feasible set, and is constructed without using a perturbation. An approximate weak duality theorem and an approximate strong duality theorem are obtained, and also an approximate variational inequality condition for efficient multiobjective solutions.


Sign in / Sign up

Export Citation Format

Share Document