Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries

2016 ◽  
Vol 8 (3) ◽  
pp. 141-149 ◽  
Author(s):  
Aditi Gautam ◽  
Asuda Sharma ◽  
Sarika Jaiswal ◽  
Samar Fatma ◽  
Vasu Arora ◽  
...  
2017 ◽  
Vol 13 (12) ◽  
pp. 415-416 ◽  
Author(s):  
Yash Shah ◽  
◽  
Deepak Sehgal ◽  
Jayaraman K Valadi ◽  
◽  
...  

2012 ◽  
Vol 13 (9) ◽  
pp. 1148-1157 ◽  
Author(s):  
Marc Torrent ◽  
M. Victoria Nogues ◽  
Ester Boix

2012 ◽  
Vol 8 (20) ◽  
pp. 994-995 ◽  
Author(s):  
Smitha Sunil Kumaran Nair ◽  
◽  
NV Subba Reddy ◽  
KS Hareesha

2018 ◽  
Vol 35 (15) ◽  
pp. 2692-2694 ◽  
Author(s):  
Boris Vishnepolsky ◽  
Malak Pirtskhalava

Abstract Supplementary information: Supplementary data are available at Bioinformatics online.


2017 ◽  
Vol 33 (13) ◽  
pp. 1921-1929 ◽  
Author(s):  
Musa Nur Gabere ◽  
William Stafford Noble

Author(s):  
Travis J Lawrence ◽  
Dana L Carper ◽  
Margaret K Spangler ◽  
Alyssa A Carrell ◽  
Tomás A Rush ◽  
...  

Abstract Summary Antimicrobial peptides (AMPs) are promising alternative antimicrobial agents. Currently, however, portable, user-friendly and efficient methods for predicting AMP sequences from genome-scale data are not readily available. Here we present amPEPpy, an open-source, multi-threaded command-line application for predicting AMP sequences using a random forest classifier. Availability and implementation amPEPpy is implemented in Python 3 and is freely available through GitHub (https://github.com/tlawrence3/amPEPpy). Supplementary information Supplementary data are available at Bioinformatics online.


Pneumologie ◽  
2006 ◽  
Vol 59 (12) ◽  
Author(s):  
R Shaykhiev ◽  
C Beißwenger ◽  
K Kändler ◽  
J Senske ◽  
A Püchner ◽  
...  

2016 ◽  
Author(s):  
Marc Devocelle ◽  
Éanna Forde ◽  
André Schütte ◽  
Andrea Molero-Bondia ◽  
Emer Reeves ◽  
...  

2015 ◽  
Vol 1 (4) ◽  
pp. 76
Author(s):  
Seyadeh Zahra Sajjadiyan ◽  
Sarah Mohammadinejad ◽  
Leila Hassani

Sign in / Sign up

Export Citation Format

Share Document