scholarly journals amPEPpy 1.0: a portable and accurate antimicrobial peptide prediction tool

Author(s):  
Travis J Lawrence ◽  
Dana L Carper ◽  
Margaret K Spangler ◽  
Alyssa A Carrell ◽  
Tomás A Rush ◽  
...  

Abstract Summary Antimicrobial peptides (AMPs) are promising alternative antimicrobial agents. Currently, however, portable, user-friendly and efficient methods for predicting AMP sequences from genome-scale data are not readily available. Here we present amPEPpy, an open-source, multi-threaded command-line application for predicting AMP sequences using a random forest classifier. Availability and implementation amPEPpy is implemented in Python 3 and is freely available through GitHub (https://github.com/tlawrence3/amPEPpy). Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Vol 35 (21) ◽  
pp. 4405-4407 ◽  
Author(s):  
Steven Monger ◽  
Michael Troup ◽  
Eddie Ip ◽  
Sally L Dunwoodie ◽  
Eleni Giannoulatou

Abstract Motivation In silico prediction tools are essential for identifying variants which create or disrupt cis-splicing motifs. However, there are limited options for genome-scale discovery of splice-altering variants. Results We have developed Spliceogen, a highly scalable pipeline integrating predictions from some of the individually best performing models for splice motif prediction: MaxEntScan, GeneSplicer, ESRseq and Branchpointer. Availability and implementation Spliceogen is available as a command line tool which accepts VCF/BED inputs and handles both single nucleotide variants (SNVs) and indels (https://github.com/VCCRI/Spliceogen). SNV databases with prediction scores are also available, covering all possible SNVs at all genomic positions within all Gencode-annotated multi-exon transcripts. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Judith Neukamm ◽  
Alexander Peltzer ◽  
Kay Nieselt

Abstract Motivation In ancient DNA research, the authentication of ancient samples based on specific features remains a crucial step in data analysis. Because of this central importance, researchers lacking deeper programming knowledge should be able to run a basic damage authentication analysis. Such software should be user-friendly and easy to integrate into an analysis pipeline. Results DamageProfiler is a Java based, stand-alone software to determine damage patterns in ancient DNA. The results are provided in various file formats and plots for further processing. DamageProfiler has an intuitive graphical as well as command line interface that allows the tool to be easily embedded into an analysis pipeline. Availability All of the source code is freely available on GitHub (https://github.com/Integrative-Transcriptomics/DamageProfiler). Supplementary information Supplementary data are available at Bioinformatics online.


1990 ◽  
Vol 10 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Paul Nikolaidis

Newer fluoroquinolones such as ciprofloxacin, pefloxacin, ofloxacin, enoxacin, and fleroxacin are potent antimicrobial agents against many gram-negative bacteria, including Pseudomonas aeruginosa species and staphylococci-sensitive or resistant to methicillin. They are almost completely absorbed when given orally, reaching therapeutic plasma and dialysate concentrations, and their long half lives permit infrequent dosing intervals. Clinical studies on fluoroquinolones efficacy in continuous ambulatory peritoneal dialysis (CAPD) infections, although not extensive, demonstrate good results. They are well tolerated and the adverse reactions, consisting mainly of gastrointestinal disturbance, were uncommon, mild, and reversible. The fluoroquinolones offer a promising alternative to standard parenteral treatments in CAPD patients, while their good oral bioavailability makes them attractive and convenient for both patients and hospital staff. However, they must be used with caution until we have more information and gain further experience.


Author(s):  
Ferhat Alkan ◽  
Joana Silva ◽  
Eric Pintó Barberà ◽  
William J Faller

Abstract Motivation Ribosome Profiling (Ribo-seq) has revolutionized the study of RNA translation by providing information on ribosome positions across all translated RNAs with nucleotide-resolution. Yet several technical limitations restrict the sequencing depth of such experiments, the most common of which is the overabundance of rRNA fragments. Various strategies can be employed to tackle this issue, including the use of commercial rRNA depletion kits. However, as they are designed for more standardized RNAseq experiments, they may perform suboptimally in Ribo-seq. In order to overcome this, it is possible to use custom biotinylated oligos complementary to the most abundant rRNA fragments, however currently no computational framework exists to aid the design of optimal oligos. Results Here, we first show that a major confounding issue is that the rRNA fragments generated via Ribo-seq vary significantly with differing experimental conditions, suggesting that a “one-size-fits-all” approach may be inefficient. Therefore we developed Ribo-ODDR, an oligo design pipeline integrated with a user-friendly interface that assists in oligo selection for efficient experiment-specific rRNA depletion. Ribo-ODDR uses preliminary data to identify the most abundant rRNA fragments, and calculates the rRNA depletion efficiency of potential oligos. We experimentally show that Ribo-ODDR designed oligos outperform commercially available kits and lead to a significant increase in rRNA depletion in Ribo-seq. Availability Ribo-ODDR is freely accessible at https://github.com/fallerlab/Ribo-ODDR Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3913-3915
Author(s):  
Hemi Luan ◽  
Xingen Jiang ◽  
Fenfen Ji ◽  
Zhangzhang Lan ◽  
Zongwei Cai ◽  
...  

Abstract Motivation Liquid chromatography–mass spectrometry-based non-targeted metabolomics is routinely performed to qualitatively and quantitatively analyze a tremendous amount of metabolite signals in complex biological samples. However, false-positive peaks in the datasets are commonly detected as metabolite signals by using many popular software, resulting in non-reliable measurement. Results To reduce false-positive calling, we developed an interactive web tool, termed CPVA, for visualization and accurate annotation of the detected peaks in non-targeted metabolomics data. We used a chromatogram-centric strategy to unfold the characteristics of chromatographic peaks through visualization of peak morphology metrics, with additional functions to annotate adducts, isotopes and contaminants. CPVA is a free, user-friendly tool to help users to identify peak background noises and contaminants, resulting in decrease of false-positive or redundant peak calling, thereby improving the data quality of non-targeted metabolomics studies. Availability and implementation The CPVA is freely available at http://cpva.eastus.cloudapp.azure.com. Source code and installation instructions are available on GitHub: https://github.com/13479776/cpva. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Vol 8 ◽  
Author(s):  
Maria del Carmen Montero-Calasanz ◽  
Jan P. Meier-Kolthoff ◽  
Dao-Feng Zhang ◽  
Adnan Yaramis ◽  
Manfred Rohde ◽  
...  
Keyword(s):  

2017 ◽  
Vol 33 (22) ◽  
pp. 3670-3672 ◽  
Author(s):  
Glyn Bradley ◽  
Steven J Barrett
Keyword(s):  

Author(s):  
Zhuohang Yu ◽  
Zengrui Wu ◽  
Weihua Li ◽  
Guixia Liu ◽  
Yun Tang

Abstract Summary MetaADEDB is an online database we developed to integrate comprehensive information on adverse drug events (ADEs). The first version of MetaADEDB was released in 2013 and has been widely used by researchers. However, it has not been updated for more than seven years. Here, we reported its second version by collecting more and newer data from the U.S. FDA Adverse Event Reporting System (FAERS) and Canada Vigilance Adverse Reaction Online Database, in addition to the original three sources. The new version consists of 744 709 drug–ADE associations between 8498 drugs and 13 193 ADEs, which has an over 40% increase in drug–ADE associations compared to the previous version. Meanwhile, we developed a new and user-friendly web interface for data search and analysis. We hope that MetaADEDB 2.0 could provide a useful tool for drug safety assessment and related studies in drug discovery and development. Availability and implementation The database is freely available at: http://lmmd.ecust.edu.cn/metaadedb/. Supplementary information Supplementary data are available at Bioinformatics online.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Santosh Kumar Upadhyay ◽  
Shailesh Sharma

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system facilitates targeted genome editing in organisms. Despite high demand of this system, finding a reliable tool for the determination of specific target sites in large genomic data remained challenging. Here, we report SSFinder, a python script to perform high throughput detection of specific target sites in large nucleotide datasets. The SSFinder is a user-friendly tool, compatible with Windows, Mac OS, and Linux operating systems, and freely available online.


Sign in / Sign up

Export Citation Format

Share Document