Cellular Trafficking of Glutathione Transferase M2-2 Between U373MG and SHSY-S7 Cells is Mediated by Exosomes

2021 ◽  
Vol 39 (2) ◽  
pp. 182-190
Author(s):  
Raúl Valdes ◽  
Alicia Armijo ◽  
Patricia Muñoz ◽  
Kjell Hultenby ◽  
Andres Hagg ◽  
...  
2021 ◽  
Vol 120 (3) ◽  
pp. 979-991
Author(s):  
Rebekah B. Stuart ◽  
Suzanne Zwaanswijk ◽  
Neil D. MacKintosh ◽  
Boontarikaan Witikornkul ◽  
Peter M. Brophy ◽  
...  

AbstractFasciola hepatica (liver fluke), a significant threat to food security, causes global economic loss for the livestock industry and is re-emerging as a foodborne disease of humans. In the absence of vaccines, treatment control is by anthelmintics; with only triclabendazole (TCBZ) currently effective against all stages of F. hepatica in livestock and humans. There is widespread resistance to TCBZ and its detoxification by flukes might contribute to the mechanism. However, there is limited phase I capacity in adult parasitic helminths with the phase II detoxification system dominated by the soluble glutathione transferase (GST) superfamily. Previous proteomic studies have demonstrated that the levels of Mu class GST from pooled F. hepatica parasites respond under TCBZ-sulphoxide (TCBZ-SO) challenge during in vitro culture ex-host. We have extended this finding by exploiting a sub-proteomic lead strategy to measure the change in the total soluble GST profile (GST-ome) of individual TCBZ-susceptible F. hepatica on TCBZ-SO-exposure in vitro culture. TCBZ-SO exposure demonstrated differential abundance of FhGST-Mu29 and FhGST-Mu26 following affinity purification using both GSH and S-hexyl GSH affinity. Furthermore, a low or weak affinity matrix interacting Mu class GST (FhGST-Mu5) has been identified and recombinantly expressed and represents a new low-affinity Mu class GST. Low-affinity GST isoforms within the GST-ome was not restricted to FhGST-Mu5 with a second likely low-affinity sigma class GST (FhGST-S2) uncovered. This study represents the most complete Fasciola GST-ome generated to date and has supported the potential of subproteomic analyses on individual adult flukes.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 420
Author(s):  
Roma Durak ◽  
Malgorzata Jedryczka ◽  
Beata Czajka ◽  
Jan Dampc ◽  
Katarzyna Wielgusz ◽  
...  

The hemp aphid Phorodon cannabis Passerini is a well- known (Asia, Europe) or newly emerging (North America) insect. It is a monophagous insect pest causing considerable damage in field and glasshouse cultivations. The aim of this work was to study the effects of meteorological (temperature) and agronomical (herbicide) factors on the biology of the hemp aphid. In one experiment, hemp plants were kept at constant temperatures ranging from 20 to 30 °C, and aphid survival and fecundity were measured. In a related experiment conducted at 20 °C, plants were treated with field-appropriate rates of a selective graminicide containing quizalofop-P-tefuryl (40 gL−1, 4.38%, HRAC group 1), commonly used to control weeds in hemp, and aphid enzyme activity was measured in addition to population parameters. We found that hemp aphids could live, feed and reproduce within the whole studied range of temperatures, demonstrating its great evolutionary plasticity. However, the optimal temperature for development was 25 °C, at which the insect lived and reproduced for 25 and 15 days, respectively, with an average fecundity of 7.5 nymphs per reproduction day. The herbicide treatment increased the activity of superoxide dismutase (SOD), catalase (CAT), β-glucosidase, S-glutathione transferase (GST), oxidoreductive peroxidase (POD), and polyphenol oxidase (PPO) in the aphids, but only on certain days after treatment, which indicates a mild stress in aphid tissues, related to a higher reproduction and changed feeding behavior; aphids moved from the actively growing tips compared to untreated plants. The results of these experiments are discussed in terms of the impact on the future management of this pest.


2021 ◽  
pp. 147394
Author(s):  
Jordan Follett ◽  
Matthew J. Farrer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document