Analytical solitary wave solution of dust ion acoustic waves in nonextensive plasma in the framework of damped forced Korteweg–de Vries–Burgers equation

Author(s):  
Niranjan Paul ◽  
Kajal Kumar Mondal ◽  
Rustam Ali ◽  
Prasanta Chatterjee
2018 ◽  
Vol 73 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Prasanta Chatterjee ◽  
Rustam Ali ◽  
Asit Saha

AbstractAnalytical solitary wave solution of the dust ion acoustic (DIA) waves was studied in the framework of the damped forced Korteweg–de Vries (DFKdV) equation in superthermal collisional dusty plasmas. The reductive perturbation technique was applied to derive the DKdV equation. It is observed that both the rarefactive and compressive solitary wave solutions are possible for this plasma model. The effects of κ and the strength (f0) and frequency (ω) of the external periodic force were studied on the analytical solitary wave solution of the DIA waves. It is observed that the parameters κ, f0 and ω have significant effects on the structure of the damped forced DIA solitary waves. The results of this study may have relevance in laboratory plasmas as well as in space plasmas.


2008 ◽  
Vol 74 (2) ◽  
pp. 245-259 ◽  
Author(s):  
MOULOUD TRIBECHE ◽  
ABDERREZAK BERBRI

AbstractThe weakly nonlinear dynamics of dust ion-acoustic waves (DIAWs) are investigated in a dusty plasma consisting of hot ion fluid, variable charge stationary dust grains and non-thermally distributed electrons. The Korteweg–de Vries equation, as well as the Korteweg–de Vries–Burgers equation, are derived on the basis of the well-known reductive perturbation theory. It is shown that, due to electron non-thermality and finite ion temperature, the present dusty plasma model can support compressive as well as rarefactive DIA solitary waves. Furthermore, there may exist collisionless DIA shock-like waves which have either monotonic or oscillatory behavior, the properties of which depend sensitively on the number of fast non-thermal electrons. The results complement and provide new insights into previously published results on this problem (Mamun, A. A. and Shukla, P. K. 2002 IEEE Trans. Plasma Sci. 30, 720).


Sign in / Sign up

Export Citation Format

Share Document