Methane uptake in tropical soybean–wheat agroecosystem under different fertilizer regimes

2015 ◽  
Vol 74 (6) ◽  
pp. 5049-5061 ◽  
Author(s):  
Santosh Mohanty ◽  
Bharati Kollah ◽  
Ranjeet S Chaudhary ◽  
Amar B Singh ◽  
Muneshwar Singh
Author(s):  
Xiaoqi Zhou ◽  
Mingyue Zhang ◽  
Sascha M.B. Krause ◽  
Xuelei Bu ◽  
Xinyun Gu ◽  
...  

2018 ◽  
Vol 36 (0) ◽  
Author(s):  
B. SHAHZAD ◽  
S.A. CHEEMA ◽  
M. FAROOQ ◽  
Z.A. CHEEMA ◽  
A. REHMAN ◽  
...  

ABSTRACT: This study was conducted to explore the growth stimulating effect of foliage applied brassica water extract on growth and productivity of bread wheat (cv. Punjab 2011) at low and high fertilizer doses. The brassica water extract (5%) and the commercial growth regulator benzyl amino purine (BAP) (5 ppm) were applied alone and in combination at 30 and 45 days after sowing (DAS) under low fertilizer dose (125 kg ha-1 N and 90 kg ha-1 P) and high fertilizer doses (225 kg ha-1 N and 150 kg ha-1 P). Application of the brassica water extract (5%) significantly improved morphological traits such as crop growth rate, leaf elongation, leaf area index, plant height and number of productive tillers under both fertilizer regimes. Similarly, growth regulator benzyl amino purine (5 ppm) application enhanced the growth and yield components of wheat. However, maximum grain yield (6.20 t ha-1) was recorded with combined application of the brassica water extract (5%) and BAP (5 ppm) under the high fertilizer dose followed by individual application of the brassica water extract (5%) and BAP where 5.39 and 5.94 t ha-1 grain yields were recorded. Biological yield also showed an almost similar trend under the influence of the allelopathic water extract of brassica and BAP. Economic and marginal net benefits of 1521.6 and 237.0 USD ha-1 were respectively achieved with the application of the brassica water extract under the lower and higher fertilizer applications, respectively. The foliage applied 5% brassica water extract and BAP (5 ppm) was the most effective and had a stimulating impact on the growth and productivity of wheat.


1999 ◽  
Vol 104 (D19) ◽  
pp. 23617-23622 ◽  
Author(s):  
Anders Priemé ◽  
Søren Christensen
Keyword(s):  
Land Use ◽  

2020 ◽  
Author(s):  
Daniel P. Bebber ◽  
Victoria R. Richards

ABSTRACTThe Green Revolution of agriculture was in part driven by application of synthetic mineral fertilizers, largely supplanting organic manure as a source of the major nutrients nitrogen, phosphorous and potassium (NPK). Though enhancing crop production and global food security, fertilizers have contributed to soil acidification, eutrophication of water bodies, and greenhouse gas emissions. Organic agriculture, employing manures or composts, has been proposed as a way of mitigating these undesirable effects. Of particular interest is the effect of fertilizer regime on soil microbes, which are key to nutrient cycling, plant health and soil structure. Meta-analyses of experimental studies indicate that mineral fertilizer increases soil microbial biomass over unfertilized controls, and that organic fertilizers increase microbial biomass and activity over mineral fertilizers. However, the effect of fertilizers on soil microbial diversity remains poorly understood. Since biological diversity is an important determinant of ecosystem function and a fundamental metric in community ecology, the effects of fertilizer regimes on soil microbial diversity are of theoretical and applied interest. Here, we conduct a meta-analysis of 31 studies reporting microbial diversity metrics in mineral fertilized (NPK), organically fertilized (ORG) and unfertilized control (CON) soils. Of these studies, 26 reported taxonomic diversity derived from sequencing, gradient gel electrophoresis, RFLP, or dilution plate assay. Functional diversity, derived from Biolog Ecoplate™ measures of carbon substrate metabolism, was reported in 8 studies, with 3 studies reporting both diversity metrics. We found that functional diversity was on average 2.6 % greater in NPK compared with CON, 6.8 % greater in ORG vs CON and 3.6 % greater in ORG vs NPK. Prokaryote taxonomic diversity was not significantly different between NPK and CON, 4.2 % greater in ORG vs CON and 4.6 % greater in ORG vs. NPK. Fungal taxonomic diversity was not significantly different between NPK or ORG vs CON, but 5.4 % lower between ORG and NPK. There was very high residual heterogeneity in all meta-analyses of soil diversity, suggesting that a large amount of further research with detailed analysis of soil properties is required to fully understand the influence of fertilizer regimes on microbial diversity and ecosystem function.


2007 ◽  
Vol 33 (2) ◽  
pp. 113-121
Author(s):  
Susan Day ◽  
J. Roger Harris

Landscape trees typically grow slowly for several years after transplanting. We investigated whether fertilization could speed tree growth during this establishment period, which fertilization regimes were most effective, and whether fertilization interacted with irrigation. Fifty-four each of landscape-sized, balled-and-burlapped red maple (Acer rubrum) and littleleaf linden (Tilia cordata) were planted into a relatively infertile silt loam soil and were fertilized (1.5 kg N/100 m 2[3 lb N/1000 ft 2]) each spring (either including or not including at planting), each fall, or not fertilized. Each of these fertilizer regimes was either irrigated or not irrigated during 3 years. An additional treatment of an unirrigated, split (spring/fall) fertilizer application was included. There was no evidence that fertilization affected irrigated trees differently than unirrigated trees. Overall, fertilization did not speed establishment and did not affect trunk growth, shoot extension, or leaf nitrogen content. There was no evidence that fall fertilization might be more effective than spring fertilization. There was no indication that fertilized trees experienced increased drought stress. Nitrogen rates and factors affecting fertilizer uptake are discussed.


2001 ◽  
Vol 37 (3) ◽  
pp. 99-110
Author(s):  
BANDUNEE CHAMPIKA LIYANAGE ◽  
YASUO OZAKI ◽  
MORIHIRO MAEDA ◽  
NOBORU KOBAYASHI ◽  
MASANORI FUJITA

Sign in / Sign up

Export Citation Format

Share Document