carbon dioxide production
Recently Published Documents


TOTAL DOCUMENTS

719
(FIVE YEARS 100)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Yosra Ahmed Soltan ◽  
Amlan Kumar Patra

The rumen is an integrated dynamic microbial ecosystem composed of enormous populations of bacteria, protozoa, fungi, archaea, and bacteriophages. These microbes ferment feed organic matter consumed by ruminants to produce beneficial products such as microbial biomass and short-chain fatty acids, which form the major metabolic fuels for ruminants. The fermentation process also involves inefficient end product formation for both host animals and the environment, such as ammonia, methane, and carbon dioxide production. In typical conditions of ruminal fermentation, microbiota does not produce an optimal mixture of enzymes to maximize plant cell wall degradation or synthesize maximum microbial protein. Well-functioning rumen can be achieved through microbial manipulation by alteration of rumen microbiome composition to enhance specific beneficial fermentation pathways while minimizing or altering inefficient fermentation pathways. Therefore, manipulating ruminal fermentation is useful to improve feed conversion efficiency, animal productivity, and product quality. Understanding rumen microbial diversity and dynamics is crucial to maximize animal production efficiency and mitigate the emission of greenhouse gases from ruminants. This chapter discusses genetic and nongenetic rumen manipulation methods to achieve better rumen microbial fermentation including improvement of fibrolytic activity, inhibition of methanogenesis, prevention of acidosis, and balancing rumen ammonia concentration for optimal microbial protein synthesis.


Author(s):  
Kristin Elfers ◽  
Yvonne Armbrecht ◽  
Melanie Brede ◽  
Gemma Mazzuoli-Weber ◽  
Gerhard Heldmaier ◽  
...  

In endothermic mammals total energy expenditure (EE) is composed of basal metabolic rate (BMR), energy spent for muscle activity, thermoregulation, any kind of production (such as milk, meat or egg production) and the thermic effect of feeding. The BMR is predominantly determined by body mass and the surface to volume ratio of the body. The EE can be quantified either by direct or indirect calorimetry. Direct calorimetry measures the rate of heat loss from the body, whereas indirect calorimetry measures oxygen consumption and carbon dioxide production and calculates heat production from oxidative nutrient combustion. A deep and sustainable understanding of EE in animals is crucial for veterinarians in order to properly calculate and evaluate feed rations, during special circumstances such as anaesthesia or in situations with increased energy demands as commonly seen in high yielding livestock. The practical class described in this manuscript provides an experimental approach to understand how EE can be measured and calculated by indirect calorimetry. Two important factors that affect the EE of animals (the thermic effect of feeding and the effect of ambient temperature) are measured. A profound knowledge about the energy requirements of animal life and its measurement is also relevant for education in general biology, animal and human physiology and nutrition. Therefore, this teaching unit can equally well be implemented in other areas of life sciences.


2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Massimo Mapelli ◽  
Simona Romani ◽  
Damiano Magrì ◽  
Marco Merlo ◽  
Marco Cittar ◽  
...  

Abstract Aims Reduced cardiac output (CO) has been considered crucial in symptoms’ genesis in hypertrophic cardiomyopathy (HCM). We evaluated the cardiopulmonary exercise testing (CPET) response in HCM focusing on parameters strongly associated with stroke volume (SV) and cardiac output (CO), such as oxygen uptake (VO2) and O2-pulse, considering both their absolute values and temporal behaviour during physical exercise. Methods and results We enrolled 312 non-end stage HCM patients, divided according to left ventricle outflow tract obstruction (LVOTO) at rest or during Valsalva manoeuver (72% with LVOTO < 30; 10% between 30 and 49; and 18% ≥50 mmHg). Peak VO2 (percent of predicted), O2-pulse, and ventilation to carbon dioxide production (VE/VCO2) slope did not change across LVOTO groups. Ninety-six (31%) HCM patients presented an abnormal O2-pulse temporal behaviour, irrespective of LVOTO values. These patients showed lower peak systolic pressure, workload (106 ± 45 vs. 130 ± 49 W), VO2 (74 ± 17% vs. 80 ± 20%) and O2-pulse (12 [9–14] vs. 14 [11–17]ml/beat), with higher VE/VCO2 slope (28 [25–31] vs. 27 [24–31]) (P < 0.005 for all). Only two patients had an abnormal VO2/work slope. Conclusions None of CPET parameters, either as absolute values or dynamic relationships, were associated with LVOTO. Differently, an abnormal O2-pulse exercise behaviour, which is strongly related to inadequate SV during exercise, correlates with reduced functional capacity (peak and anaerobic threshold VO2 and workload) and increased VE/VCO2 slope, helping identifying more advanced disease irrespectively of LVOTO. Adding O2-pulse kinetics evaluation to standard CPET could lead to a potential incremental benefit in terms of HCM prognostic stratification and, then, therapeutic management.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Ichiro Hirayama ◽  
Toshifumi Asada ◽  
Miyuki Yamamoto ◽  
Naoki Hayase ◽  
Takahiro Hiruma ◽  
...  

Abstract Background Several clinical guidelines recommend monitoring blood lactate levels and central venous oxygen saturation for hemodynamic management of patients with sepsis. We hypothesized that carbon dioxide production (VCO2) and oxygen extraction (VO2) evaluated using indirect calorimetry (IC) might provide additional information to understand the dynamic metabolic changes in sepsis. Methods Adult patients with sepsis who required mechanical ventilation in the intensive care unit (ICU) of our hospital between September 2019 and March 2020 were prospectively enrolled. Sepsis was diagnosed according to Sepsis-3. Continuous measurement of VCO2 and VO2 using IC for 2 h was conducted within 24 h after tracheal intubation, and the changes in VCO2 and VO2 over 2 h were calculated as the slopes by linear regression analysis. Furthermore, temporal lactate changes were evaluated. The primary outcome was 28-day survival. Results Thirty-four patients with sepsis were enrolled, 26 of whom survived 76%. Significant differences in the slope of VCO2 (− 1.412 vs. − 0.446) (p = 0.012) and VO2 (− 2.098 vs. − 0.851) (p = 0.023) changes were observed between non-survivors and survivors. Of note, all eight non-survivors and 17 of the 26 survivors showed negative slopes of VCO2 and VO2 changes. For these patients, 17 survivors had a median lactate of − 2.4% changes per hour (%/h), whereas non-survivors had a median lactate of 2.6%/hr (p = 0.023). Conclusions The non-survivors in this study showed temporal decreases in both VCO2 and VO2 along with lactate elevation. Monitoring the temporal changes in VCO2 and VO2 along with blood lactate levels may be useful in predicting the prognosis of sepsis.


2021 ◽  
pp. 1-3
Author(s):  
Shivrambhai Dhanabhai Prajapati ◽  
Ankit Rajeshbhai Sorathiya

spinal anesthesia is a widely used technique for both elective and emergency surgeries. Shivering is one of the most commonly recognized complications of the central neuraxial blockade because of impairment of thermoregulatory control, reported in 40%-70% of the patients undergoing surgery under spinal anaesthesia. Post-anesthetic shivering is defined as an involuntary,spontaneous,rhythmic oscillating muscle hyperactivity that increases metabolic heat production up to 600% after anesthesia. Shivering during neuraxial anesthesia is a common issue that could have possibly adverse impacts, for example, increased oxygen consumption, carbon dioxide production, lung ventilation and cardiac work, as well as causing diminished mixed venous oxygen saturation. Spinal anesthesia impedes the thermoregulatory system by restraining tonic vasoconstriction which assumes significant role in the regulation of temperature


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1261
Author(s):  
Abdulkareem G. Alsultan ◽  
Nurul Asikin-Mijan ◽  
Zueriani Ibrahim ◽  
Robiah Yunus ◽  
Siti Zulaika Razali ◽  
...  

Biodiesel, comprising mono alkyl fatty acid esters or methyl ethyl esters, is an encouraging option to fossil fuels or diesel produced from petroleum; it has comparable characteristics and its use has the potential to diminish carbon dioxide production and greenhouse gas emissions. Manufactured from recyclable and sustainable feedstocks, e.g., oils originating from vegetation, biodiesel has biodegradable properties and has no toxic impact on ecosystems. The evolution of biodiesel has been precipitated by the continuing environmental damage created by the deployment of fossil fuels. Biodiesel is predominantly synthesised via transesterification and esterification procedures. These involve a number of key constituents, i.e., the feedstock and catalytic agent, the proportion of methanol to oil, the circumstances of the reaction and the product segregation and purification processes. Elements that influence the yield and standard of the obtained biodiesel encompass the form and quantity of the feedstock and reaction catalyst, the proportion of alcohol to feedstock, the temperature of the reaction, and its duration. Contemporary research has evaluated the output of biodiesel reactors in terms of energy production and timely biodiesel manufacture. In order to synthesise biodiesel for industrial use efficaciously, it is essential to acknowledge the technological advances that have significant potential in this sector. The current paper therefore offers a review of contemporary progress, feedstock categorisation, and catalytic agents for the manufacture of biodiesel and production reactors, together with modernised processing techniques. The production reactor, form of catalyst, methods of synthesis, and feedstock standards are additionally subjects of discourse so as to detail a comprehensive setting pertaining to the chemical process. Numerous studies are ongoing in order to develop increasingly efficacious techniques for biodiesel manufacture; these acknowledge the use of solid catalytic agents and non-catalytic supercritical events. This review appraises the contemporary situation with respect to biodiesel production in a range of contexts. The spectrum of techniques for the efficacious manufacture of biodiesel encompasses production catalysed by homogeneous or heterogeneous enzymes or promoted by microwave or ultrasonic technologies. A description of the difficulties to be surmounted going forward in the sector is presented.


2021 ◽  
Vol 50 (9) ◽  
pp. 2537-2548
Author(s):  
Li-Xia Wang ◽  
In-Lee Choi ◽  
Ho-Min Kang

Asparagus spear is vulnerable to microbial groups which can cause deterioration and short shelf-life after harvesting. The effects of cold plasma, coupled with modified atmosphere (MA) packaging on microorganism development, and quality changes of green asparagus were investigated. The development of microorganisms was inhibited after sterilisation. After 21 days of storage, cold plasma for 6 h (P6h) and hot water combined with cold plasma for 3 h (HW+P3h) treatments obtained the lowest number of aerobic bacteria. Hot water (HW), P6h and HW+P3h treatments showed higher inhibition effect on yeast and mold, and also on E. coli. Visual quality and off-odour of P6h treatment were superior to and inferior to other treatments, respectively. Hot water and cold plasma treatments alone inhibited the firming. Cold plasma 1 (P1h) and 3 h (P3h) were better in retarding yellowing of asparagus. A difference in electrolyte leakage (EL) between control (43%) and sterilisation treatments (greater than 60%) was immediately observed on the sterilisation day. Treatments using HW and P1h decreased the EL after 21 days. The soluble solid content (SSC) decreased based on the initial content, and hot water treatment resulted in higher SSC. Increases in ethylene (C₂H₄) and carbon dioxide production and decrease in oxygen were observed during the first 3 days. The content of C₂H₄ under cold plasma treatments was higher than hot water and control on day 21. These results suggested that cold plasma 6 h treatment resulted in better sensory quality and less decay and softening for green asparagus.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 925
Author(s):  
Héctor Aarón Lee-Rangel ◽  
Anayeli Vázquez Valladolid ◽  
Heriberto Mendez-Cortes ◽  
Juan Carlos Garcia-Lopez ◽  
Gregorio Álvarez-Fuentes ◽  
...  

The present study aimed to evaluate the effect of copra meal (the waste coconut of the oil industry) on in vitro ruminal kinetic and greenhouse gases production and on in vivo lamb performance. Twenty-eight male Rambouillet sheep (initial body weight 24.5 ± 3.9 kg) were randomly assigned to one of the four treatments: 0, 50, 100, and 150 g of copra meal/kg in their diet (dry matter basis). Final weight, weight gain, and feed intake were not affected (p > 0.05) by the copra meal addition. The gas production volume (V) decreased, and the gas production rate increased, in a linear trend (p < 0.05) as copra meal was added to the diet. In contrast, methane and CO2 production showed an opposite quadratic trend (p < 0.05), with the highest and lowest values reported at 100 g/kg DM of copra meal, respectively. The addition of copra meal in the lambs’ diet decreases the volume of gas production and is a strategy to decrease methane and carbon dioxide production in feeding without affecting animal performance.


Sign in / Sign up

Export Citation Format

Share Document