Evolution of a coastal upwelling event during summer 2004 in the southern Taiwan Strait

2011 ◽  
Vol 30 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Caiyun Zhang ◽  
Huasheng Hong ◽  
Chuanmin Hu ◽  
Shaoling Shang
2015 ◽  
Vol 166 ◽  
pp. 170-177 ◽  
Author(s):  
Jun Hu ◽  
Wenlu Lan ◽  
Bangqin Huang ◽  
Kuo-Ping Chiang ◽  
Huasheng Hong

2011 ◽  
Vol 67 (4) ◽  
pp. 385-393 ◽  
Author(s):  
Huasheng Hong ◽  
Chen-Tung Arthur Chen ◽  
Yuwu Jiang ◽  
Jiann-Yuh Lou ◽  
Zhaozhang Chen ◽  
...  

2021 ◽  
Vol 240 ◽  
pp. 105969
Author(s):  
Robert Boenish ◽  
Bai-an Lin ◽  
Jacob P. Kritzer ◽  
Michael J. Wilberg ◽  
Chang-chun Shen ◽  
...  

2021 ◽  
pp. 103666
Author(s):  
Peilong Ju ◽  
Mingru Chen ◽  
William W.L. Cheung ◽  
Yongjun Tian ◽  
Shengyun Yang ◽  
...  

2011 ◽  
Vol 31 (6) ◽  
pp. S1-S2 ◽  
Author(s):  
George T.F. Wong ◽  
Huasheng Hong ◽  
Senjie Lin ◽  
Hongbin Liu ◽  
Huijie Xue

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Zuozhu Wen ◽  
Wenfang Lin ◽  
Rong Shen ◽  
Haizheng Hong ◽  
Shuh-Ji Kao ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 245-262 ◽  
Author(s):  
Blanca Ausín ◽  
Diana Zúñiga ◽  
Jose A. Flores ◽  
Catarina Cavaleiro ◽  
María Froján ◽  
...  

Abstract. A systematic investigation of the spatial and temporal variability in coccolithophore abundance and distribution through the water column of the NW Iberian coastal upwelling system was performed. From July 2011 to June 2012, monthly sampling at various water depths was conducted at two parallel stations located at 42∘ N. Total coccosphere abundance was higher at the outer-shelf station, where warmer, nutrient-depleted waters favoured coccolithophore rather than phytoplanktonic diatom blooms, which are known to dominate the inner-shelf location. In seasonal terms, higher coccosphere and coccolith abundances were registered at both stations during upwelling seasons, coinciding with high irradiance levels. This was typically in conjunction with stratified, nutrient-poor conditions (i.e. relaxing upwelling conditions). However, it also occurred during some upwelling events of colder, nutrient-rich subsurface waters onto the continental shelf. Minimum abundances were generally found during downwelling periods, with unexpectedly high coccolith abundance registered in subsurface waters at the inner-shelf station. This finding can only be explained if strong storms during these downwelling periods favoured resuspension processes, thus remobilizing deposited coccoliths from surface sediments, and hence hampering the identification of autochthonous coccolithophore community structure. At both locations, the major coccolithophore assemblages were dominated by Emiliania huxleyi, small Gephyrocapsa group, Gephyrocapsa oceanica, Florisphaera profunda, Syracosphaera spp., Coronosphaera mediterranea, and Calcidiscus leptoporus. Ecological preferences of the different taxa were assessed by exploring the relationships between environmental conditions and temporal and vertical variability in coccosphere abundance. These findings provide relevant information for the use of fossil coccolith assemblages in marine sediment records, in order to infer past environmental conditions, of particular importance for Paleoceanography. Both E. huxleyi and the small Gephyrocapsa group are proposed as proxies for the upwelling regime with a distinct affinity for different stages of the upwelling event: E. huxleyi was associated with warmer, nutrient-poor and more stable water column (i.e. upwelling relaxation stage) while the small Gephyrocapsa group was linked to colder waters and higher nutrient availability (i.e. early stages of the upwelling event), similarly to G. oceanica. Conversely, F. profunda is suggested as a proxy for the downwelling regime and low-productivity conditions. The assemblage composed by Syracosphaera pulchra, Coronosphaera mediterranea, and Rhabdosphaera clavigera may be a useful indicator of the presence of subtropical waters conveyed northward by the Iberian Poleward Current. Finally, C. leptoporus is proposed as an indicator of warmer, saltier, and oligotrophic waters during the downwelling/winter regime.


2011 ◽  
Vol 8 (4) ◽  
pp. 841-850 ◽  
Author(s):  
S. Shang ◽  
Q. Dong ◽  
Z. Lee ◽  
Y. Li ◽  
Y. Xie ◽  
...  

Abstract. This study used MODIS observed phytoplankton absorption coefficient at 443 nm (Aph) as a preferable index to characterize phytoplankton variability in optically complex waters. Aph derived from remote sensing reflectance (Rrs, both in situ and MODIS measured) with the Quasi-Analytical Algorithm (QAA) were evaluated by comparing them with match-up in situ measurements, collected in both oceanic and nearshore waters in the Taiwan Strait (TWS). For the data with matching spatial and temporal window, it was found that the average percentage error (ε) between MODIS derived Aph and field measured Aph was 33.8% (N=30, Aph ranges from 0.012 to 0.537 m−1), with a root mean square error in log space (RMSE_log) of 0.226. By comparison, ε was 28.0% (N=88, RMSE_log = 0.150) between Aph derived from ship-borne Rrs and Aph measured from water samples. However, values of ε as large as 135.6% (N=30, RMSE_log = 0.383) were found between MODIS derived chlorophyll-a (Chl, OC3M algorithm) and field measured Chl. Based on these evaluation results, we applied QAA to MODIS Rrs data in the period of 2003–2009 to derive climatological monthly mean Aph for the TWS. Three distinct features of phytoplankton dynamics were identified. First, Aph is low and the least variable in the Penghu Channel, where the South China Sea water enters the TWS. This region maintains slightly higher values in winter (~17% higher than that in the other seasons) due to surface nutrient entrainment under winter wind-driven vertical mixing. Second, Aph is high and varies the most in the mainland nearshore water, with values peaking in summer (June–August) when river plumes and coastal upwelling enhance surface nutrient loads. Interannual variation of bloom intensity in Hanjiang River estuary in June is highly correlated with alongshore wind stress anomalies, as observed by QuikSCAT. The year of minimum and maximum bloom intensity is in the midst of an El Niño and a La Niña event, respectively. Third, a high Aph patch appears between April and September in the middle of the southern TWS, corresponding to high thermal frontal probabilities, as observed by MODIS. Our results support the use of satellite derived Aph for time series analyses of phytoplankton dynamics in coastal ocean regions, whereas satellite Chl products derived empirically using spectral ratio of Rrs suffer from artifacts associated with non-biotic optically active materials.


Sign in / Sign up

Export Citation Format

Share Document