coastal upwelling
Recently Published Documents


TOTAL DOCUMENTS

1332
(FIVE YEARS 234)

H-INDEX

76
(FIVE YEARS 6)

2021 ◽  
Vol 8 ◽  
Author(s):  
Aiqin Han ◽  
Jianping Gan ◽  
Minhan Dai ◽  
Zhongming Lu ◽  
Linlin Liang ◽  
...  

Coastal downwelling is generally considered to have a limited biological effect compared with coastal upwelling. In this study, downslope transport of nearshore, nutrient-enriched waters during downwelling is found to induce distinct biological productivity in the water column over the northeastern South China Sea (NSCS). By conducting a process-driven study over a widened shelf with intensified downwelling in the NSCS, we investigated the biophysical processes associated with strong nutrient enrichment in the water column of downwelled waters. These processes and underlying mechanisms are largely unreported and remain unclear. Field measurements and a three-dimensional coupled physical-biological model incorporating nitrate (N), phytoplankton (P), zooplankton (Z), and detritus (D) were utilized to investigate distinct cross-shore nutrient transport over the uniquely widened NSCS shelf. We revealed that intensified downwelling circulation, dynamically induced by the widened shelf topography, enhanced chlorophyll a and biological productivity in a strip of well-mixed water over the inner shelf as well as in the downwelled water over the mid-shelf. Strong time lags and spatial differences existed among N, P, and Z because of the physical transport and the ensuing biogeochemical response. The intensified downslope transport of nutrient-rich coastal water formed distinct cross-shore wedge-shaped P, Z, and D structures, while N was rapidly consumed in the water column. This study illustrates the underlying coupled physical-biogeochemical processes associated with the observed biogeochemical response to wind-driven downwelling circulation over the variable shelf, which are commonly found in coastal oceans worldwide.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 903
Author(s):  
Holly Kelchner ◽  
Katie E. Reeve-Arnold ◽  
Kathryn M. Schreiner ◽  
Sibel Bargu ◽  
Kim G. Roques ◽  
...  

Harmful algal blooms (HABs) are increasing globally in frequency, persistence, and geographic extent, posing a threat to ecosystem and human health. To date, no occurrences of marine phycotoxins have been recorded in Mozambique, which may be due to absence of a monitoring program and general awareness of potential threats. This study is the first documentation of neurotoxin, domoic acid (DA), produced by the diatom Pseudo-nitzschia along the east coast of Africa. Coastal Inhambane Province is a biodiversity hotspot where year-round Rhincodon typus (whale shark) sightings are among the highest globally and support an emerging ecotourism industry. Links between primary productivity and biodiversity in this area have not previously been considered or reported. During a pilot study, from January 2017 to April 2018, DA was identified year-round, peaking during Austral winter. During an intense study between May and August 2018, our research focused on identifying environmental factors influencing coastal productivity and DA concentration. Phytoplankton assemblage was diatom-dominated, with high abundances of Pseudo-nitzschia spp. Data suggest the system was influenced by nutrient pulses resulting from coastal upwelling. Continued and comprehensive monitoring along southern Mozambique would provide critical information to assess ecosystem and human health threats from marine toxins under challenges posed by global change.


2021 ◽  
Vol 18 (23) ◽  
pp. 6271-6286
Author(s):  
Krysten Rutherford ◽  
Katja Fennel ◽  
Dariia Atamanchuk ◽  
Douglas Wallace ◽  
Helmuth Thomas

Abstract. Continental shelves are thought to be affected disproportionately by climate change and are a large contributor to global air–sea carbon dioxide (CO2) fluxes. It is often reported that low-latitude shelves tend to act as net sources of CO2, whereas mid- and high-latitude shelves act as net sinks. Here, we combine a high-resolution regional model with surface water time series and repeat transect observations from the Scotian Shelf, a mid-latitude region in the northwest North Atlantic, to determine what processes are driving the temporal and spatial variability of partial pressure of CO2 (pCO2) on a seasonal scale. In contrast to the global trend, the Scotian Shelf acts as a net source. Surface pCO2 undergoes a strong seasonal cycle with an amplitude of ∼ 200–250 µatm. These changes are associated with both a strong biological drawdown of dissolved inorganic carbon (DIC) in spring (corresponding to a decrease in pCO2 of 100–200 µatm) and pronounced effects of temperature, which ranges from 0 ∘C in the winter to near 20 ∘C in the summer, resulting in an increase in pCO2 of ∼ 200–250 µatm. Throughout the summer, events with low surface water pCO2 occur associated with coastal upwelling. This effect of upwelling on pCO2 is also in contrast to the general assumption that upwelling increases surface pCO2 by delivering DIC-enriched water to the surface. Aside from these localized events, pCO2 is relatively uniform across the shelf. Our model agrees with regional observations, reproduces seasonal patterns of pCO2, and simulates annual outgassing of CO2 from the ocean of +1.7±0.2 mol C m−2 yr−1 for the Scotian Shelf, net uptake of CO2 by the ocean of -0.5±0.2 mol C m−2 yr−1 for the Gulf of Maine, and uptake by the ocean of -1.3±0.3 mol C m−2 yr−1 for the Grand Banks.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaowei Zhu ◽  
Guodong Jia ◽  
Yuhang Tian ◽  
Aibin Mo ◽  
Weihai Xu ◽  
...  

Dissolved oxygen (DO) in seawater is fundamental to marine ecosystem health. How DO in coastal upwelling areas responds to upwelling intensity under climate change is of particular interest and vital importance, because these productive regions account for a large fraction of global fishery production and marine biodiversity. The Yuedong upwelling (YDU) in the coastal northern South China Sea can be served as a study case to explore long-term responses of DO to upwelling and climate due to minor influence of riverine input. Here, bottom water DO conditions were recovered by sedimentary C28Δ22/Δ5,22 ratios of steroids in three short cores, with lower ratio value indicating higher DO concentration. The ratio records showed oscillations in varying degrees and exhibited no clear trends before ∼1980s, after which, however, there occurred a persistent decreasing trend or basically remained at lower values. Thus, inferred DO variations by the C28Δ22/Δ5,22 ratio records are not compatible with regional YDU-involved physical processes under climate change, such as southwesterly wind-induced onshore advection of reduced-oxygenated source waters from outer shelf and oceanic warming that would rather lead to less oxygenation in bottom waters in recent decades. Intriguingly, the alcohol records of n-C20:1/C28Δ5,22 and br-C15/C28Δ5,22 ratios, indicative of the relative strengths between biogeochemical oxygen consumption (i.e., by zooplankton and microbes) and photosynthetic oxygen production (i.e., by phytoplankton), changed almost in parallel with the C28Δ22/Δ5,22 records in three cores. Accordingly, we propose that net photosynthetic oxygen production outweighs source water– and warming-induced increasing deoxygenation in the study area. This study may suggest an important biogeochemical mechanism in determining bottom water DO dynamics in shallow coastal upwelling regions with minor contribution of riverine input.


2021 ◽  
Vol 194 (1) ◽  
Author(s):  
Vishnu Narayanan Nampoothiri S ◽  
Ch. Venkata Ramu ◽  
K. Rasheed ◽  
Y. V. B. Sarma ◽  
G. V. M. Gupta

2021 ◽  
Vol 8 ◽  
Author(s):  
Peter von Dassow ◽  
Paula Valentina Muñoz Farías ◽  
Sarah Pinon ◽  
Esther Velasco-Senovilla ◽  
Simon Anguita-Salinas

The cosmopolitan phytoplankter Emiliania huxleyi contrasts with its closest relatives that are restricted to narrower latitudinal bands, making it interesting for exploring how alternative outcomes in phytoplankton range distributions arise. Mitochondrial and chloroplast haplogroups within E. huxleyi are shared with their closest relatives: Some E. huxleyi share organelle haplogroups with Gephyrocapsa parvula and G. ericsonii which inhabit lower latitudes, while other E. huxleyi share organelle haplogroups with G. muellerae, which inhabit high latitudes. We investigated whether the phylogeny of E. huxleyi organelles reflects environmental gradients, focusing on the Southeast Pacific where the different haplogroups and species co-occur. There was a high congruence between mitochondrial and chloroplast haplogroups within E. huxleyi. Haplogroup II of E. huxleyi is negatively associated with cooler less saline waters, compared to haplogroup I, both when analyzed globally and across temporal variability at the small special scale of a center of coastal upwelling at 30° S. A new mitochondrial haplogroup Ib detected in coastal Chile was associated with warmer waters. In an experiment focused on inter-species comparisons, laboratory-determined thermal reaction norms were consistent with latitudinal/thermal distributions of species, with G. oceanica exhibiting warm thermal optima and tolerance and G. muellerae exhibiting cooler thermal optima and tolerances. Emiliania huxleyi haplogroups I and II tended to exhibit a wider thermal niche compared to the other Gephyrocapsa, but no differences among haplogroups within E. huxleyi were found. A second experiment, controlling for local adaptation and time in culture, found a significant difference between E. huxleyi haplogroups. The difference between I and II was of the expected sign, but not the difference between I and Ib. The differences were small (≤1°C) compared to differences reported previously within E. huxleyi by local adaptation and even in-culture evolution. Haplogroup Ib showed a narrower thermal niche. The cosmopolitanism of E. huxleyi might result from both wide-spread generalist phenotypes and specialist phenotypes, as well as a capacity for local adaptation. Thermal reaction norm differences can well explain the species distributions but poorly explain distributions among mitochondrial haplogroups within E. huxleyi. Perhaps organelle haplogroup distributions reflect historical rather than selective processes.


2021 ◽  
Vol 944 (1) ◽  
pp. 012055
Author(s):  
A Suprianto ◽  
A S Atmadipoera ◽  
J Lumban-Gaol

Abstract Bali Strait is part of fisheries management zone (WPP 573), where abundant fishery potential, of lemuru fish commodity. Here, physical oceanographic setting such as upwelling event plays an important role on maintaining high primary productivity and lemuru fish distribution. This study aims to describe physical process and dynamics of seasonal coastal upwelling using time-series datasets (2008 and 2014) of temperature, salinity, current velocity, surface chlorophyll-a (chl-a) from INDESO model and satellite imagery. The results showed that upwelling in the Bali Strait only during the southeast monsoon period when the south-easterly wind force surface Ekman drift of about 5.5 × 10−3 Sv flowing south-eastward (toward offshore). Upwelling event is characterized by minimum parameter of sea surface temperature (24.93 °C), and sea level anomaly (0.75 m), but maximum of surface chlorophyll-a (1.33 mg/m3). Furthermore, isotherm of 26 °C and Isohaline 33.7 psu are outcropped at sea surface in the center of upwelling zone. In contrast, during the nortwest monsoon period these isolines remain at deeper layer of about 80-90 m depth. Mean temperature-based upwelling index during peak of upwelling in August (1.19±0.19 °C). Upwelling impact on high abundance of lemuru fish (Sardinella sp.) production two month later after peak of chl-a.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marisa Roch ◽  
Peter Brandt ◽  
Sunke Schmidtko ◽  
Filomena Vaz Velho ◽  
Marek Ostrowski

A warming and freshening trend of the mixed layer in the upper southeastern tropical Atlantic Ocean (SETA) is observed by the Argo float array during the time period of 2006–2020. The associated ocean surface density reduction impacts upper-ocean stratification that intensified by more than 30% in the SETA region since 2006. The initial typical subtropical stratification with a surface salinity maximum is shifting to more tropical conditions characterized by warmer and fresher surface waters and a subsurface salinity maximum. During the same period isopycnal surfaces in the upper 200 m are shoaling continuously. Observed wind stress changes reveal that open ocean wind curl-driven upwelling increased, however, partly counteracted by reduced coastal upwelling due to weakened alongshore southerly winds. Weakening southerly winds might be a reason why tropical surface waters spread more southward reaching further into the SETA region. The mixed layer warming and freshening and associated stratification changes might impact the marine ecosystem and pelagic fisheries in the Angolan and northern Namibian upwelling region.


Author(s):  
Royston Uning ◽  
Mohd Talib Latif ◽  
Haris Hafizal Abd Hamid ◽  
Mohd Shahrul Mohd Nadzir ◽  
Md Firoz Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document