Delineation of hydrocarbon and non-hydrocarbon zones using fractal analysis of well-log data from Bhogpara oil field, NE India

2020 ◽  
Vol 35 (1) ◽  
Author(s):  
Bappa Mukherjee ◽  
P. N. S. Roy ◽  
Kalachand Sain
2020 ◽  
Author(s):  
Marat Mazitov ◽  
Alexander Kalugin ◽  
Tatiana Kiryanova ◽  
Oksana Kirzeleva ◽  
Milana Fedorova

2021 ◽  
Vol 54 (2E) ◽  
pp. 186-197
Author(s):  
Maan Al-Majid

The Early Miocene Euphrates Formation is characterized by its oil importance in the Qayyarah oil field and its neighboring fields. This study relied on the core and log data analyses of two wells in the Qayyarah oil field. According to the cross-plot’s information, the Euphrates Formation is mainly composed of dolomite with varying proportions of limestone and shale. Various measurements to calculate the porosity, permeability, and water saturation on the core samples were made at different depths in the two studied wells Qy-54 and Qy-55. A relationship between water saturation and capillary pressure has been plotted for some core samples to predict sites of normal compaction in the formation. The line regression for this relationship was considered as a function of the ratio of large voids to the total volume of voids in the sample. The coefficient of determination parameter was used in estimating the amount of homogeneity in the sizes of the voids, as it was observed to increase significantly at the sites of shale. After dividing the formation into several zones, the well log data were analyzed to predict the locations of oil presence in both wells. The significance of the negative secondary porosity in detecting the hydrocarbon sites in the Euphrates Formation was deduced by its correspondence with the large increase in the true resistivity values in both wells. More than 90% of the formation parts represent reservoir rocks in both wells, but only about 75% of them are oil reservoirs in the well Qy-54 and nearly 50% of them are oil reservoirs in the well Qy-55.


2021 ◽  
Vol 11 (5) ◽  
pp. 2075-2089
Author(s):  
Mohamed Mahmoud Elhossainy ◽  
Ahmed Kamal Basal ◽  
Hussein Tawfik ElBadrawy ◽  
Sobhy Abdel Salam ◽  
Mohammad Abdelfattah Sarhan

AbstractThis paper presents different well log data interpretation techniques for evaluating the reservoir quality for the sandstone reservoir of the Alam El-Bueib-3A Member in Safir-03 well, Shushan Basin, Egypt. The evaluation of the available well log data for the Alam El-Bueib-3A Member in this well indicated high quality as oil-producing reservoir between depths 8108–8133 ft (25 ft thick). The calculated reservoir parameters possess shale volume less than or equal to 9% indicating the clean nature of this sandstone interval, water saturation values range from 10 to 23%, and effective porosity varies between 19 and 23%. Bulk volume of water is less than 0.04, non-producing water (SWirr) saturation varies between 10 and 12%, and permeability ranges from 393 to 1339 MD reflecting excellent reservoir quality. The calculated BVW values are less than the minimum (BVWmin = 0.05) reflecting clean (no water) oil production, which was confirmed through the drill stem test (DST). The relative permeabilities to both water and oil are located between 0.01–0 and 1.0–0.5, respectively. The water cut is fairly low where it ranges between 0 and 20%. Additionally, the water saturation values are less than the critical water saturation (Scw = 29.5%) which reflects that the whole net pay will flow hydrocarbon, whereas the water phase will remain immobile. This was confirmed with reservoir engineering through the DST.


2011 ◽  
Vol 14 (01) ◽  
pp. 35-44 ◽  
Author(s):  
Hong Tang ◽  
Niall Toomey ◽  
W. Scott Meddaugh

Summary The Maastrichtian (Upper Cretaceous) reservoir is one of five prolific oil reservoirs in the giant Wafra oil field. The Maastrichtian oil production is largely from subtidal dolomites at an average depth of 2,500 ft. Carbonate deposition occurred on a very gently dipping, shallow, arid, and restricted ramp setting that transitioned between normal marine conditions to restricted lagoonal environments. The average porosity of the reservoir interval is approximately 15%, although productive zones have porosity values up to 30–40%. The average permeability of the reservoir interval is approximately 30 md. Individual core plugs have measured permeability up to 1,200 md. Efforts to predict sedimentary facies from well logs in carbonate reservoirs is difficult because of the complex carbonate sedimentary facies structures, strong diagenetic overprint, and challenging log analysis in part owing to the presence of vugs and fractures. In the study, a workflow including (1) core description preprocessing, (2) log- and core-data cleanup, and (3) probabilistic-neural-network (PNN) facies analysis was used to predict facies from log data accurately. After evaluation of a variety of statistical approaches, a PNN-based approach was used to predict facies from well-log data. The PNN was selected as a tool because it has the capability to delineate complex nonlinear relationships between facies and log data. The PNN method was shown to outperform multivariate statistical algorithms and, in this study, gave good prediction accuracy (above 70%). The prediction uncertainty was quantified by two probabilistic logs—discriminant ability and overall confidence. These probabilistic logs can be used to evaluate the prediction uncertainty during interpretation. Lithofacies were predicted for 15 key wells in the Wafra Maastrichtian reservoir and were effectively used to extend the understanding of the Maastrichtian stratigraphy, depositional setting, and facies distribution.


2014 ◽  
Vol 651-653 ◽  
pp. 1302-1305 ◽  
Author(s):  
Zong An Xue ◽  
Yi Ping Wu

The typical characteristics of carbonate reservoir is heterogeneous. The reservoirs were deposited in slope of marginal neritic carbonate plat form and marginal reefs in Middle East Oil Field. The vuggy carbonate reservoir pore systems include intergranular pores, mould pores, intercrystal pores, micropores and dissolution fracture. I t can be divided into separate vugs and touching vugs on the basis of vug interconnection. The goal of well-log evaluation is to describe the spatial distribution of petrophysical parameters, such as porosity and permeability. Well-log evaluation and core analyses provide quantitative measurements of petrophysical parameters in the vicinity of the well bore. The key for quantifying physics models is buildup the relationship between the log data and the core analyses result. The purpose of reservoir evaluation is to use the Interactive Mineral Solver module of Interactive Physics software to solve for mineralogy, porosity and permeability. The result of the analyses shows that calculated parameters has high coherence with core sample test. For vuggy carbonate reservoir evaluation, It shows that accurate values of physics parameters can be predicted using selected module in well-log data processing and interpretation.


2021 ◽  
Vol 14 (10) ◽  
Author(s):  
Anthony John Ilozobhie ◽  
Daniel Ikechukwu Egu
Keyword(s):  
Well Log ◽  

Sign in / Sign up

Export Citation Format

Share Document