fracture porosity
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Aishah Khalid Abdullah ◽  
Bhaskar Chakrabarti ◽  
Anas Mansor Al-Rukaibi ◽  
Talal Fahad Hadi Al-Adwani ◽  
Khushboo Havelia ◽  
...  

Abstract The State of Kuwait is currently appraising and successfully developing the tight carbonates reservoirs of Jurassic age, which have very low matrix porosity and permeability. These reservoirs are affected by several tectonic events of faulting and folding, resulting in the development of interconnected natural fractures, which provide effective permeability to the reservoirs in form of production sweet spots. The objective of the study was to characterize the natural fractures and identify high permeability sweet spots as being appraisal drilling locations in a discovered field with tight carbonate reservoirs. An integrated approach was undertaken for building a discrete fracture network model by characterizing the developed faulting- and folding-related fractures and combining all subsurface data from multiple domains. The reservoir structure has a doubly plunging anticline at the field level that is affected by several strike-slip faults. The faulting-related fractures were characterized by generating multiple structural seismic attributes, highlighting subsurface discontinuities and fracture corridors. The folding-related fractures were modelled using structural restoration techniques by computing stresses resulting from the anticlinal folding. The fracture model was built in addition to the 3D matrix property model for this tight carbonate reservoir, resulting in a dual-porosity-permeability static model. Analogue data was used to compute fracture aperture and expected fracture porosity and permeability, to identify the sweet spots. Structural seismic attributes such as Ant Tracking and Consistent Dip were successful in highlighting and identifying the fault lineaments and fracture corridors. The seismic discontinuities were validated using the fractures interpreted in the image log data from the predrilled wells before being input into the fracture model. Paleo stresses, derived from structural restoration, were combined with the reservoir facies and geomechanical properties to gain important insight into predicting fractures developed due to folding. Several fracture aperture scenarios were run to capture the uncertainty associated with the computed fracture porosity and permeability. Based on the results, several sweet spots were identified, which were ranked based on their extent and connected volumes of the various permeability cases. Identifying these sweet spots helped make informed decisions regarding well planning and drilling sequence. High-inclination wells aligned parallel to the present-day maximum stress direction were proposed, which would cut across corridors of the predicted open fractures. Through this study, comprehensive fracture characterization and fracture permeability understanding of the tight carbonates in the field under study were successfully achieved. This workflow will be useful in exploratory or appraisal fields with tight carbonate reservoirs.


Author(s):  
Jinjiang Liu ◽  
Fuxing Zhang ◽  
Peng Qian ◽  
Wenlin Wu

Drilling fluid loss always occurs in fracture-porosity reservoirs and it causes severe problems. To reduce and prevent lost circulation, it is important to get to know the cause and the characteristic of drilling fluid loss. According to the approach in the reservoir simulation and well test analysis, a new model for drilling fluid loss in fracture-porosity reservoir is presented. Multi fractures in the formation and drilling fluid seepage between fracture and rock matrix have been considered in the model. The governing equations are derived based on the principle of conservation of mass. The model is solved numerically using Newton-Raphson iterative method. The obtained results indicate that drilling fluid leak-off has great influence on the total leakage volume. It is necessary to consider the impact of the drilling fluid leak-off. In addition, influence of formation properties, such as fracture stiffness, rock matrix porosity, rock matrix permeability, and operation factors, such as pressure difference between wellbore and formation, are also analysed in detail in the paper which could help better understand the factors that influence the drilling fluid loss during drilling operation.


2020 ◽  
pp. petgeo2020-079
Author(s):  
Shaoqing Sun ◽  
David A. Pollitt

Naturally fractured reservoirs are important contributors to global petroleum reserves and production. Existing classification schemes for fractured reservoirs do not adequately differentiate between certain types of fractured reservoirs, leading to difficulty in understanding fundamental controls on reservoir performance and recovery efficiency. Three hundred naturally fractured reservoirs were examined to define a new classification scheme that is independent of the type of fracturing and describes fundamentally different matrix types, rock properties, fluid storage and flow characteristics.This study categorises fractured reservoirs in three groups: 1) Type 1: characterized by a tight matrix where fractures and solution-enhanced fracture porosity provide both storage capacity and fluid-flow pathways; 2) Type 2: characterized by a macroporous matrix which provides the primary storage capacity where fractures and solution-enhanced fracture porosity provide essential fluid-flow pathways; and 3) Type 3: characterized by a microporous matrix which provides all storage capacity where fractures only provide essential fluid-flow pathways. Differentiation is made between controls imparted by inherent natural conditions, such as rock and fluid properties and natural drive mechanisms, and human controls, such as choice of development scheme and reservoir management practices.The classification scheme presented here is based on reservoir and production characteristics of naturally fractured reservoirs and represents a refinement of existing schemes. This refinement allows accurate comparisons to be made between analogous fractured reservoirs, and trends and outliers in reservoir performance to be identified. Case histories provided herein demonstrate the practical application of this new classification scheme and the benefits that arise when applying it to the understanding of naturally fractured reservoirs.


2020 ◽  
Vol 8 (4) ◽  
pp. SP109-SP133 ◽  
Author(s):  
Heloise Bloxsom Lynn ◽  
Bill Goodway

A 3D P-P high-fold full-azimuth full-offset reflection survey was acquired and processed to characterize a naturally fractured carbonate reservoir. The reservoir is a thick carbonate, which will flow commercial oil with a sufficient fracture network. Extensive calibration data include (1) a horizontal borehole’s resistivity image log, (2) the first 24 months cumulative oil produced, by stage, as known from chemical frac tracer data, (3) pre- and postfrac job instantaneous shut-in pressures, (4) microseismic, and (5) wireline log data. We used the cumulative oil production to document the spatially varying amount of aligned vertical porosity (aligned compliance or fracture porosity) connected to the stage borehole location. The stages of high oil production exhibited, for the fracture-perpendicular azimuth, the more positive amplitude variation with angle (AVA) gradients, and dimmer near-angle (6°–15° angles of incidence) amplitudes, compared to the fracture-parallel azimuth. The azimuthal variation of the AVA gradient fit the cos 2θ curve well, indicating the presence of one set of vertical aligned fractures dominating the azimuthal amplitude signature. In a similar fashion, the azimuthal variation of the mathematical intercept, physically the near-angle amplitudes, also fit the cos 2θ curve well. We have constructed crossplots of the azimuthal near-angle amplitude versus the AVA gradient on a bin-by-bin basis: we observed a straight line at bins with elevated oil production (elevated fracture density). A straight line crossplot of the (AVA gradient, mathematical intercept) is the signature of change of the (sensed) porosity, as long as the lithology and pore fluid are held constant. In accord with industry knowledge, we found that porosity affects the P impedance and thus the near-angle amplitudes: the aligned porosity yields azimuthal P impedance (measured at the 6°–15° angles of incidence). Legacy high-fold 3D P-P surveys rich in the 6°–20° angles of incidence should be considered for reprocessing and reinterpretation using these techniques.


Fractals ◽  
2020 ◽  
Vol 28 (05) ◽  
pp. 2050074
Author(s):  
MINGYU CAI ◽  
DEREK ELSWORTH ◽  
YULIANG SU ◽  
MINGJING LU

Current hydraulic fracture conductivity evolution models fail to incorporate the fractures microscopic petrophysical properties, and notable discrepancies consequently exist between predictions and observations. We present a new conductivity model considering the irregular fracture undulation and channel roughness in propped fractures. The propped fracture networks are treated as bundles of tortuous capillaries with a fractal distribution of sizes with the size of a single capillary calculated using a constitutive model representing contacting rock surfaces under normal cyclic loading. The capillaries tortuosity is described by the effective inclination angle, and the fracture closure is calculated by the history of the in situ stress distribution and rock property changes. The fracture surface roughness, number of capillaries per unit width of the hydraulic fracture, and total cross-sectional area are obtained using fractal theory. The proposed model is validated by comparison with experimental data and other analytical solutions. The results indicate that the apparent permeability and conductivity of the fracture significantly decrease to 58.0% and 48.2% within 2 years of production, respectively, and then remain steady for the remainder of the well life. Compared with fixed fracture conductivity, the temporal variability in conductivity leads to a lower formation pressure drop and reduction in final production. Furthermore, the influences of the effective inclination angle, relative roughness of micro-channel, fracture porosity, and microchannel fractal dimension on the conductivity are investigated and the conductivity proves to be largely controlled by the fracture porosity, while the influence of the relative roughness ratio on the conductivity is least significant.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 569
Author(s):  
Zhengchen Zhang ◽  
Pingping Li ◽  
Yujie Yuan ◽  
Kouqi Liu ◽  
Jingyu Hao ◽  
...  

Fractures, which are related to tectonic activity and lithology, have a significant impact on the storage and production of oil and gas in shales. To analyze the impact of lithological factors on fracture development in shales, we selected the shale formation from the Da’anzhai member of the lower Jurassic shales in a weak tectonic deformation zone in the Sichuan Basin. We defined a lithology combination index (LCI), that is, an attribute quantity value of some length artificially defined by exploring the lithology combination. LCI contains information on shale content at a certain depth, the number of layers in a fixed length (lithology window), and the shale content in the lithology window. Fracture porosity is the percentage of pore volume to the apparent volume of the rock. In the experiment, fracture porosity was obtained using 50 samples from six wells, by observing rock slices under a microscope. The relationship between LCI and fracture porosity was analyzed based on machine learning, regression analysis, and weighting methods. The results show that LCI is able to represent the impact of multiple lithological factors (i.e., shale content at a certain depth, the number of layers in the lithology window, and the shale content in the lithology window). The LCI within a thickness of 2 m for the lithology window demonstrates a good linear relationship with fracture porosity. We therefore suggest LCI be used for fracture predictions of shale formations from weak tectonic deformation zones. Our proposed LCI and fracture prediction methods also provide implications for sandstone, mudstone, or carbonate formations under similar processes.


Sign in / Sign up

Export Citation Format

Share Document