Water Level and Groundwater Dynamics across a Sandur-Wetland Landscape in Response to Seasonal and Episodic Events, South-East Iceland

Wetlands ◽  
2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Harold-Alexis Scheffel ◽  
Kathy L. Young
2017 ◽  
Vol 18 (2) ◽  
pp. 698-712 ◽  
Author(s):  
Yunliang Li ◽  
Jing Yao ◽  
Guizhang Zhao ◽  
Qi Zhang

Abstract Hydraulic relationship between wetlands and lakes has become an important topic for the scientific and decision-making communities. Poyang Lake, an open freshwater lake in China, and the extensive floodplain wetland surrounding the lake, plays an important role in protecting the biodiversity of this internationally recognized wetland system. This paper is the first field-based study into an investigation of the groundwater dynamics in the floodplain wetland and the associated hydraulic relationship with the lake using hydrological, hydrochemical and stable isotope evidence, as exemplified by Poyang Lake wetland. Results show that groundwater stores within the floodplain wetland exhibit spatial and temporal variability in terms of the magnitudes of groundwater level variations. Floodplain groundwater fluctuations largely reflect patterns of the precipitation and the lake water level; however, the groundwater dynamics are highly affected by the variations in the lake water level, rather than local precipitation. Floodplain wetland is most likely to receive the lake water during spring and summer and may recharge the lake during periods of low lake water level. Additionally, floodplain groundwater displays similar hydrochemical and environmental isotope signatures to that of the lake at different sampling periods, indicating a close hydraulic relationship between groundwater and the lake throughout the year.


2021 ◽  
Vol 228 ◽  
pp. 01008
Author(s):  
Zepeng Li ◽  
Xin He ◽  
Chuiyu Lu

As an important water resource, groundwater has been unreasonably developed for a long time in our country, causing a lot of problems. This paper combines the data from the national groundwater monitoring stations and the groundwater depth data collected locally to statistics and analysis of groundwater overexploitation across the country. Especially in key plains, through the water level variation method. The research results are compared and verified with national authoritative data such as Groundwater Dynamics Monthly Report and predecessors’ records in the literature, revealing the current key areas of groundwater overexploitation, and clarifying the importance and urgency of groundwater governance in the future. This study also put forward some suggestions of groundwater overexploitation.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 825 ◽  
Author(s):  
Hailin You ◽  
Hongxiang Fan ◽  
Ligang Xu ◽  
Yongming Wu ◽  
Lizhen Liu ◽  
...  

Currently, wetland stability is under threat due to the joint effects of global climate change and human activity, especially in lakes. Hence, it is necessary to evaluate the health status of wetland ecosystems such as lakes, identify the variables causing the wetland degradation and work to protect the wetlands from the identified variables in the future. Based on fourteen high-resolution autumn remote sensing images from 1989–2013, the classification characteristics and spatial distribution patterns of wetland landscapes in Poyang Lake were studied through quantitative interpretation technology. An established health assessment index system named the EHCI (Ecological Health Comprehensive Index) was used to assess the health status of Poyang Lake. Additionally, the relationship between water regime and health status of wetland landscape distribution of Poyang Lake were investigated by multivariate statistical analysis. The results demonstrated: (1) The total area of three first level (or six second level) types of wetland landscapes showed a stable status, which was long-term maintaining at about 3026 km2 from 1989–2013. (2) The water area shows a downward trend, while the areas of vegetation and land-water transition zone show upward trends. (3) The proposed EHCI of the Poyang Lake wetland presented a downward trend. According to the EHCI results from 1989–2013, the health status of Poyang Lake wetland was healthy for two years, unhealthy for four years and sub-healthy for eight years. (4) The water level fluctuation greatly affected the EHCI, and the effect became greater as the water level increased. These results contribute to the understanding of specific effects of hydrological process on the health status of the Poyang Lake wetland. In addition they provide a scientific reference for the maintenance of stable ecosystem functions of the seasonal freshwater lake. These results contribute to the understanding of specific effects of hydrological process on the health status of the Poyang Lake. In addition they provide a scientific reference for the maintenance of stable ecosystem functions of the seasonal freshwater lake.


2020 ◽  
Vol 49 (1) ◽  
Author(s):  
Matej Blatnik ◽  
Cyril Mayaud ◽  
Franci Gabrovšek

The article of Blatnik et al. (2019) “Groundwater dynamics between Planinsko Polje and springs of the Ljubljanica River, Slovenia” published in Acta Carsologica, 48/2 focused on describing the hydrogeological behaviour of the aquifer between Planinsko Polje and the springs of the Ljubljanica River. The authors analysed the effect of different high water events that occurred between January 2015 and May 2018. Interpretations were based on hydrographs obtained by continuous measurements of water level, temperature and specific electric conductivity in selected ponors, springs and water active caves located in the area between Planinsko Polje and the springs of the Ljubljanica River. Through these interpretations, different conceptual hydrological models about the dynamics and directions of the flow in the aquifer have been proposed and tested. A flow connection was proposed between the Hrušica Plateau, estavelles located at the NW border of Planinsko Polje, and caves Gradišnica (W2) and Gašpinova Jama (W3) close to town Logatec. In this supplement, we provide new data recorded during an unusual hydrological event in August 2018. These further support and stress the importance of the connection between the Hrušica Plateau and Logatec region (W2 and W3).


2021 ◽  
pp. 1-36

Abstract Like many coastal communities throughout the Mid-Atlantic region, relative sea level rise and accelerating instances of coastal nuisance flooding are having a tangible negative impact on economic activity and infrastructure in Annapolis, MD. The drivers of coastal nuisance flooding, in general, are a superposition of global, regional, and local influences that occur across spatial and temporal scales that determine water levels relative to a coastal datum. Most of the research to date related to coastal flooding has been focused on high impact episodic events, decomposing the global and regional drivers of sea level rise, or assessing seasonal to interannual trends in. In this study, we focus specifically on the role of short-duration (hours) meteorological wind forcing on water level anomalies in Annapolis, MD. Annapolis is an ideal location to study these processes because of the orientation of the coast relative to the prevailing wind directions, and the long record of reliable data observations. Our results suggest that three-, six-, nine-, and twelve-hour sustained wind forcing significantly influences water level anomalies in Annapolis. Sustained wind forcing out of the northeast, east, southeast and south is associated with positive water level anomalies, and sustained wind forcing out of the northwest and north is associated with negative water level anomalies. While these observational results suggest a relationship between sustained wind forcing and water level anomalies, a more robust approach is needed to account for other meteorological variables and drivers that occur across a variety of spatial and temporal scales.


Sign in / Sign up

Export Citation Format

Share Document